Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The big male nose

19.11.2013
New study explains why men's noses are bigger than women's

Human noses come in all shapes and sizes. But one feature seems to hold true: Men’s noses are bigger than women’s.


Male noses grow disproportionately larger than female noses beginning at puberty, a University of Iowa study has found. The reason: Males need to breathe in more oxygen to feed muscle mass than females. Image courtesy of the College of Dentistry.

A new study from the University of Iowa concludes that men’s noses are about 10 percent larger than female noses, on average, in populations of European descent. The size difference, the researchers believe, comes from the sexes’ different builds and energy demands: Males in general have more lean muscle mass, which requires more oxygen for muscle tissue growth and maintenance. Larger noses mean more oxygen can be breathed in and transported in the blood to supply the muscle.

The researchers also note that males and females begin to show differences in nose size at around age 11, generally, when puberty starts. Physiologically speaking, males begin to grow more lean muscle mass from that time, while females grow more fat mass. Prior research has shown that, during puberty, approximately 95 percent of body weight gain in males comes from fat-free mass, compared to 85 percent in females.

“This relationship has been discussed in the literature, but this is the first study to examine how the size of the nose relates to body size in males and females in a longitudinal study,” says Nathan Holton, assistant professor in the UI College of Dentistry and lead author of the paper, published in the American Journal of Physical Anthropology. “We have shown that as body size increases in males and females during growth, males exhibit a disproportionate increase in nasal size. This follows the same pattern as energetic variables such as oxygenate consumption, basal metabolic rate and daily energy requirements during growth.”

It also explains why our noses are smaller than those of our ancestors, such as the Neanderthals. The reason, the researchers believe, is because our distant lineages had more muscle mass, and so needed larger noses to maintain that muscle. Modern humans have less lean muscle mass, meaning we can get away with smaller noses.

“So, in humans, the nose can become small, because our bodies have smaller oxygen requirements than we see in archaic humans,” Holton says, noting also that the rib cages and lungs are smaller in modern humans, reinforcing the idea that we don’t need as much oxygen to feed our frames as our ancestors. “This all tells us physiologically how modern humans have changed from their ancestors.”

Holton and his team tracked nose size and growth of 38 individuals of European descent enrolled in the Iowa Facial Growth Study from three years of age until the mid-twenties, taking external and internal measurements at regular intervals for each individual. The researchers found that boys and girls have the same nose size, generally speaking, from birth until puberty percolated, around age 11. From that point onward, the size difference grew more pronounced, the measurements showed.

“Even if the body size is the same,” Holton says, “males have larger noses, because more of the body is made up of that expensive tissue. And, it’s at puberty that these differences really take off.”

Holton says the findings should hold true for other populations, as differences in male and female physiology cut across cultures and races, although further studies would need to confirm that.

Prior research appears to support Holton’s findings. In a 1999 study published in the European Journal of Nutrition, researchers documented that males' energy needs doubles that of females post-puberty, “indicating a disproportional increase in energy expenditure in males during this developmental period,” Holton and his colleagues write.

Another interesting aspect of the research is what it all means for how we think of the nose. It’s not just a centrally located adornment on our face; it’s more a valuable extension of our lungs.

“So, in that sense, we can think of it as being independent of the skull, and more closely tied with non-cranial aspects of anatomy,” Holton says.

Thomas Southard, professor and chair of orthodontics in the UI College of Dentistry, is a contributing author on the paper. Other authors are Todd Yokley, from Metropolitan State University in Denver, and Andrew Froehle, from Wright State University, in Dayton, Ohio.

The Department of Orthodontics in the UI College of Dentistry funded the research.

Contacts
Nathan Holton, College of Dentistry, 319- 384-4786
Richard Lewis, University Communication and Marketing, 319-384-0012

Richard Lewis | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: Human noses body size fat-free mass muscle mass muscle tissue

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>