Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big Hole Filled in Cloud Research

04.07.2011
Planes may punch precipitation-producing holes or canals into clouds, and thereby increase precipitation near airports

Under certain conditions, private and commercial propeller planes and jet aircraft may induce odd-shaped holes or canals into clouds as they fly through them. These holes and canals have long fascinated the public and now new research shows they may affect precipitation in and around airports with frequent cloud cover in the wintertime.

Here is how: Planes may produce ice particles by freezing cloud droplets that cool as they flow around the tips of propellers, over wings or over jet aircraft, and thereby unintentionally seed clouds. These seeding ice particles attract more moisture, becoming heavier, and then "snow out" or fall out of the cloud as snow along the path of a plane, thereby creating a hole in a cloud.

The effects of this inadvertent cloud seeding are similar to the effects of the intentional seeding of clouds: that is, both processes may increase the amount of precipitation falling from clouds.

The study, which was partially funded by the National Center for Atmospheric Research (NCAR) in Boulder, Colo., appears in the July 1, 2011 issue of the journal Science. NCAR is partially funded by the National Science Foundation.

"It is unlikely that the hole-punching ability of planes affects global climate," says Andrew Heymsfield of NCAR, the study's lead author. But because the hole-punching ability of planes is particularly high when they fly through low subfreezing clouds, major airports that are covered in low clouds during winter are particularly vulnerable to precipitation associated with this inadvertent seeding.

This vulnerability means it may be necessary to de-ice planes more frequently, Heymsfield says. Also, because weather station records that climate modelers incorporate into climate predictions are housed at airports in the Arctic and Antarctic, climate predictions for these areas may be influenced by local weather conditions caused by inadvertent seeding near those airports.

Heymsfield says that his team's latest research built on a paper published by the team last year on a similar topic in the Bulletin of the American Meteorological Society by: 1) evaluating the exact types of aircraft that produce airplane induced holes and canals; 2) measuring the spread and persistence of the holes; 3) hypothesizing the mechanisms for the spread of holes; 4) numerically modeling the holes; 5) defining the processes for their spread and persistence; and 6) examining how often hole punched clouds and associate effects may occur near several major airports.

For more information about inadvertent cloud seeding by planes, see NCAR's press release on the study.

Media Contacts
Lily Whiteman, National Science Foundation (703) 292-8310 lwhitema@nsf.gov
David Hosansky, National Center for Atmospheric Research (303) 497-8611 hosansky@ucar.edu
Principal Investigators
Andrew Heymsfield, National Center for Atmospheric Research (303) 497-8943 heyms1@ucar.edu
Related Websites
NSF Report -- Clouds: The Wild Card of Climate Change: http://www.nsf.gov/news/special_reports/clouds/

NSF Press Release -- Clouds: A Weapon Against Climate Change?: http://www.nsf.gov/news/news_summ.jsp?cntn_id=119462

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Lily Whiteman | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>