Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley study shows ozone and nicotine a bad combination for asthma

17.08.2010
Another reason for including asthma on the list of potential health risks posed by secondhand tobacco smoke, especially for non-smokers, has been uncovered. Furthermore, the practice of using ozone to remove the smell of tobacco smoke from indoor environments, including hotel rooms and the interiors of vehicles, is probably a bad idea.

A new study by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) shows that ozone can react with the nicotine in secondhand smoke to form ultrafine particles that may become a bigger threat to asthma sufferers than nicotine itself. These ultrafine particles also become major components of thirdhand smoke – the residue from tobacco smoke that persists long after a cigarette or cigar has been extinguished.

“Our study reveals that nicotine can react with ozone to form secondary organic aerosols that are less than 100 nanometers in diameter and become a source of thirdhand smoke,” says Mohamad Sleiman, a chemist with the Indoor Environment Department of Berkeley Lab’s Environmental Energy Technologies Division (EETD) who led this research.

“Because of their size and high surface area to volume ratio, ultrafine particles have the capacity to carry and deposit potentially harmful organic chemicals deep into the lower respiratory tract where they promote oxidative stress,” Sleiman says. “It’s been well established by others that the elderly and the very young are at greatest risk.”

Results of this study have been reported in the journal Atmospheric Environment in a paper titled “Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke.” Co-authoring this paper with Sleiman were Hugo Destaillats and Lara Gundel, also with EETD’s Indoor Environment Department, and Jared Smith, Chen-Lin Liu, Musahid Ahmed and Kevin Wilson with the Chemical Dynamics Group of Berkeley Lab’s Chemical Sciences Division. The study was carried out under a grant from the University of California’s Tobacco-Related Disease Research Program.

The dangers of mainstream and secondhand tobacco smoke, which contain several thousand chemical toxins distributed as particles or gases, have been well documented. This past February, a study, also spearheaded by Sleiman, Destaillats and Gundel, revealed the potential health hazards posed by thirdhand tobacco smoke which was shown to react with nitrous acid, a common indoor air pollutant, to produce dangerous carcinogens. Until now, however, in terms of forming ultrafine particles, there have been no studies on the reaction of nicotine with ozone.

Released as a vapor by the burning of tobacco, nicotine is a strong and persistent adsorbent onto indoor surfaces that is released back to indoor air for a period of months after smoking ceased. Ozone is a common urban pollutant that infiltrates from outdoor air through ventilation that has been linked to health problems, including asthma and respiratory ailments.

Says co-author Gundel, “Not only did we find that nicotine from secondhand smoke reacts with ozone to make ultrafine particles – a new and stunning development – but we also found that several oxidized products of ozone and nicotine have higher values on the asthma hazard index than nicotine itself.”

Says co-author Destaillats, “In our previous study, we found that carcinogens were formed on indoor surfaces, which can lead to exposures that are likely to be dominated by dermal uptake and dust ingestion. This study suggests a different exposure pathway to aged secondhand or thirdhand smoke through the formation and inhalation of ultrafine particles. Also, our group had previously described the formation of secondary organic aerosols in reaction of indoor ozone with terpenoids, commonly present in household products. But this is the first time that nicotine has been tagged as a potential candidate to form ultrafine particles or aerosols through a reaction with ozone.”

To identify the products formed when nicotine in secondhand smoke is reacted with ozone, Sleiman and his co-authors utilized the unique capabilities of Berkeley Lab’s Advanced Light Source (ALS), a premier source of x-ray and ultraviolet light for scientific research. Working at ALS Beamline 9.0., which is optimized for the study of chemical dynamics using vacuum ultraviolet (VUV) light and features an aerosol chemistry experimental station, the researchers found new chemical compounds forming within one hour after the start of the reaction.

“The tunable VUV light of Beamline 9.0.2’s custom-built VUV aerosol mass spectrometer minimized the fragmentation of organic molecules and enabled us to chemically characterize the secondhand smoke and identify individual constituents of secondary organic aerosols,” says Sleiman. “The identification of multifunctional compounds, such as carbonyls and amines, present in the ultrafine particles, made it possible for us to estimate the Asthma Hazard Index for these compounds.”

While the findings in this study support recommendations from the California EPA and the Air Resources Board that discourage the use of ozone-generating “air purifiers,” which among other applications, have been used for the removal of tobacco odors, the Berkeley Lab researchers caution that the levels of both ozone and nicotine in their study were at the high end of typical indoor conditions.

Says Sleiman, “In addition, we need to do further investigations to verify that the formation of ultrafine particles occurs under a range of real world conditions. However, given the high levels of nicotine measured indoors when smoking takes place regularly and the significant yield of ultrafine particles formation in our study, our findings suggest new link between asthma and exposure to secondhand and thirdhand smoke.”

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

Additional Information

For more information about Berkeley Lab’s Indoor Environment Department and its researchers visit the Website at http://eetd.lbl.gov/r-indoor.html

For more information about the Chemical Dynamics Beamline at the Advanced Light Source visit the Website at http://www.chemicaldynamics.lbl.gov/

For more information about the Advanced Light Source visit the Website at http://www.als.lbl.gov/

For more information on the University of California’s Tobacco-Related Disease Research Program (TRDRP) visit the Website at http://www.trdrp.org or contact Kamlesh Asotra at kamlesh.asotra@ucop.edu or 510-287-3366.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>