Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley study shows ozone and nicotine a bad combination for asthma

17.08.2010
Another reason for including asthma on the list of potential health risks posed by secondhand tobacco smoke, especially for non-smokers, has been uncovered. Furthermore, the practice of using ozone to remove the smell of tobacco smoke from indoor environments, including hotel rooms and the interiors of vehicles, is probably a bad idea.

A new study by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) shows that ozone can react with the nicotine in secondhand smoke to form ultrafine particles that may become a bigger threat to asthma sufferers than nicotine itself. These ultrafine particles also become major components of thirdhand smoke – the residue from tobacco smoke that persists long after a cigarette or cigar has been extinguished.

“Our study reveals that nicotine can react with ozone to form secondary organic aerosols that are less than 100 nanometers in diameter and become a source of thirdhand smoke,” says Mohamad Sleiman, a chemist with the Indoor Environment Department of Berkeley Lab’s Environmental Energy Technologies Division (EETD) who led this research.

“Because of their size and high surface area to volume ratio, ultrafine particles have the capacity to carry and deposit potentially harmful organic chemicals deep into the lower respiratory tract where they promote oxidative stress,” Sleiman says. “It’s been well established by others that the elderly and the very young are at greatest risk.”

Results of this study have been reported in the journal Atmospheric Environment in a paper titled “Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke.” Co-authoring this paper with Sleiman were Hugo Destaillats and Lara Gundel, also with EETD’s Indoor Environment Department, and Jared Smith, Chen-Lin Liu, Musahid Ahmed and Kevin Wilson with the Chemical Dynamics Group of Berkeley Lab’s Chemical Sciences Division. The study was carried out under a grant from the University of California’s Tobacco-Related Disease Research Program.

The dangers of mainstream and secondhand tobacco smoke, which contain several thousand chemical toxins distributed as particles or gases, have been well documented. This past February, a study, also spearheaded by Sleiman, Destaillats and Gundel, revealed the potential health hazards posed by thirdhand tobacco smoke which was shown to react with nitrous acid, a common indoor air pollutant, to produce dangerous carcinogens. Until now, however, in terms of forming ultrafine particles, there have been no studies on the reaction of nicotine with ozone.

Released as a vapor by the burning of tobacco, nicotine is a strong and persistent adsorbent onto indoor surfaces that is released back to indoor air for a period of months after smoking ceased. Ozone is a common urban pollutant that infiltrates from outdoor air through ventilation that has been linked to health problems, including asthma and respiratory ailments.

Says co-author Gundel, “Not only did we find that nicotine from secondhand smoke reacts with ozone to make ultrafine particles – a new and stunning development – but we also found that several oxidized products of ozone and nicotine have higher values on the asthma hazard index than nicotine itself.”

Says co-author Destaillats, “In our previous study, we found that carcinogens were formed on indoor surfaces, which can lead to exposures that are likely to be dominated by dermal uptake and dust ingestion. This study suggests a different exposure pathway to aged secondhand or thirdhand smoke through the formation and inhalation of ultrafine particles. Also, our group had previously described the formation of secondary organic aerosols in reaction of indoor ozone with terpenoids, commonly present in household products. But this is the first time that nicotine has been tagged as a potential candidate to form ultrafine particles or aerosols through a reaction with ozone.”

To identify the products formed when nicotine in secondhand smoke is reacted with ozone, Sleiman and his co-authors utilized the unique capabilities of Berkeley Lab’s Advanced Light Source (ALS), a premier source of x-ray and ultraviolet light for scientific research. Working at ALS Beamline 9.0., which is optimized for the study of chemical dynamics using vacuum ultraviolet (VUV) light and features an aerosol chemistry experimental station, the researchers found new chemical compounds forming within one hour after the start of the reaction.

“The tunable VUV light of Beamline 9.0.2’s custom-built VUV aerosol mass spectrometer minimized the fragmentation of organic molecules and enabled us to chemically characterize the secondhand smoke and identify individual constituents of secondary organic aerosols,” says Sleiman. “The identification of multifunctional compounds, such as carbonyls and amines, present in the ultrafine particles, made it possible for us to estimate the Asthma Hazard Index for these compounds.”

While the findings in this study support recommendations from the California EPA and the Air Resources Board that discourage the use of ozone-generating “air purifiers,” which among other applications, have been used for the removal of tobacco odors, the Berkeley Lab researchers caution that the levels of both ozone and nicotine in their study were at the high end of typical indoor conditions.

Says Sleiman, “In addition, we need to do further investigations to verify that the formation of ultrafine particles occurs under a range of real world conditions. However, given the high levels of nicotine measured indoors when smoking takes place regularly and the significant yield of ultrafine particles formation in our study, our findings suggest new link between asthma and exposure to secondhand and thirdhand smoke.”

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

Additional Information

For more information about Berkeley Lab’s Indoor Environment Department and its researchers visit the Website at http://eetd.lbl.gov/r-indoor.html

For more information about the Chemical Dynamics Beamline at the Advanced Light Source visit the Website at http://www.chemicaldynamics.lbl.gov/

For more information about the Advanced Light Source visit the Website at http://www.als.lbl.gov/

For more information on the University of California’s Tobacco-Related Disease Research Program (TRDRP) visit the Website at http://www.trdrp.org or contact Kamlesh Asotra at kamlesh.asotra@ucop.edu or 510-287-3366.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>