Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly Japan quake and tsunami spurred global warming, ozone loss

26.03.2015

Buildings destroyed by the 2011 Tohoku earthquake released thousands of tons of climate-warming and ozone-depleting chemicals into the atmosphere, according to a new study.

New research suggests that the thousands of buildings destroyed and damaged during the 9.0 magnitude earthquake and tsunami that struck Japan four years ago released 6,600 metric tons (7,275 U.S. tons) of gases stored in insulation, appliances and other equipment into the atmosphere.


An air quality monitoring station on Cape Ochiishi, on the east side of Hokkaido Island in Japan. Ground-based air monitoring stations in the country recorded high levels of halocarbons following the Tohoku earthquake and tsunami in 2011.

Credit: National Institute for Environmental Studies

Emissions of these chemicals, called halocarbons, increased by 21 percent to 91 percent over typical levels, according to the new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

First look

The study is the first to look at how the Tohoku earthquake affected the release of halocarbons into the atmosphere and likely one of the first to examine emissions of these gases following a natural disaster, according to the study’s authors.

“What we found is a new mechanism of halocarbon emissions coming from the earthquake,” said Takuya Saito, a senior researcher at the National Institute for Environmental Studies in Tsukuba, Japan, and lead author of the new paper.

Halocarbons released as a result of the earthquake include chemicals that deplete the ozone layer and contribute to global warming – including some gases that are no longer used because of those harmful effects on the environment. These include chlorofluorocarbons like CFC-11, a powerful ozone-depleting chemical used in foam insulation until it was phased out in 1996, and hydrochlorofluorocarbons like HCFC-22, an ozone-depleting refrigerant that is also a powerful greenhouse gas and is in the process of being phased out of use. Among other halocarbons released by the earthquake were hydrofluorocarbons, or HFCs, and sulfur hexafluoride, both potent greenhouse gases.

The emissions of the six halocarbons released from Japan in 2011 are equivalent to the discharge of 1,300 metric tons (1,433 U.S. tons) of CFC-11 alone — equal to the amount of CFC-11s found in 2.9 million refrigerators manufactured before the chemical was banned. The total emissions of the six chemicals are also equivalent to the release of 19.2 million metric tons (21.2 million U.S. tons) of carbon dioxide into the atmosphere – an amount equal to about 10 percent of Japanese vehicle emissions in 2011, according to the study’s authors.

Post-quake surprise

Saito and his colleagues decided to investigate halocarbon emissions and their relationship to the earthquake after ground-based air monitoring stations in Japan recorded surprising high levels of these chemicals. The stations are on Hateruma Island, east of Taiwan; Cape Ochiishi, on the east side of Hokkaido; and Ryori, north of Tokyo on Honshu.

The study’s authors combined these measurements with an atmospheric model and other mathematical methods to figure out that increased emissions from the earthquake were involved, how much of the emissions could be attributed to the disaster and how they compared to previous years.

They found that emissions of all six halocarbons were higher from March 2011 to February 2012, following the earthquake, than they were during the same time the year before the event and during the same period the year after it.

About 50 percent of the halocarbon emissions after the earthquake were of HCFC-22, likely due to damage to refrigerators and air conditioners. Emissions of the gas were 38 percent higher than the years before and after the earthquake. Emissions of CFC-11 were 72 percent higher than emissions before and after the earthquake, likely due to damage to insulation foams used in appliances and buildings, according to the study. Emissions of two types of HFCs — HFC-134a and HFC-32 — rose by 49 percent and 63 percent compared to the years before and after the disaster.

Impacts assessed

The new study also calculates the total impact of the increased emissions on ozone depletion and global warming. The earthquake-triggered surge of halocarbons increased ozone loss from Japanese emissions of those six gases by 38 percent* from March 2011 to February 2012 compared to the same time period in the years before and after the event. The amount of heat trapped in the atmosphere because of Japan’s emissions of those six gases rose 36 percent from March 2011 to February 2012 compared to earlier and later years because of the extra emissions from the earthquake, according to the new study.

Saito said the new study shows the importance of including the release of gases from natural disasters in emissions estimates. Although the global effect of one event is small — emissions associated with the Tohoku earthquake accounted for 4 percent or less of global emissions in 2011 — the cumulative effect could be larger, he said. Natural disasters accelerate the release of halocarbons and replacement of these gases could lead to the use of more halocarbons, according to the study.

National halocarbon emissions estimates by the Japanese government did not factor in the release of the chemicals due to the earthquake and are likely underestimating the amount of these substances in the atmosphere, according to Saito. Governments rely on inventories of chemicals and generic data about how they are used to estimate their amounts in the atmosphere – called a “bottom-up” approach” — whereas the new study uses actual measurements of the gases – called a “top-down” approach. “It is apparent that there are unreported emissions,” Saito said.

The new study shows that there could be a need to include the amount of halocarbons released by catastrophic events in emissions estimates, said Steve Montzka, a research chemist at the National Oceanic and Atmospheric Administration in Boulder, Colorado, who was not involved in the research. It also highlights the need for more measurements of halocarbons in the atmosphere, he added, rather than relying on bottom-up emissions estimates from inventories.

“Atmospheric scientists often say that relying solely on bottom-up inventories to tell you how greenhouse gas emissions change is like going on a diet without weighing yourself,” Montzka said.

*Note: This value has been corrected from the accepted manuscript posted online.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation onFacebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL062814/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.
Title
“Extraordinary halocarbon emissions initiated by the 2011 Tohoku earthquake”

Authors:
Takuya Saito: National Institute for Environmental Studies, Tsukuba, Japan;

Xuekun Fang: Norwegian Institute for Air Research, Kjeller, Norway; and State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China;

Andreas Stohl: Norwegian Institute for Air Research, Kjeller, Norway;

Yoko Yokouchi and Jiye Zeng: National Institute for Environmental Studies, Tsukuba, Japan;

Yukio Fukuyama: Japan Meteorological Agency, Tokyo, Japan;

Hitoshi Mukai: National Institute for Environmental Studies, Tsukuba, Japan.

Contact Information for the Authors:
Takuya Saito: saito.takuya@nies.go.jp

Xuekun Fang: fangxuekun@gmail.com, +1 (617) 955-9144.

Andreas Stohl: ast@nilu.no, +49-89-374-18029


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

Nanci Bompey | American Geophysical Union
Further information:
http://www.agu.org

Further reports about: AGU Atmosphere EMISSIONS Tohoku earthquake chemicals earthquake estimates gases greenhouse ozone

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>