Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly Japan quake and tsunami spurred global warming, ozone loss

26.03.2015

Buildings destroyed by the 2011 Tohoku earthquake released thousands of tons of climate-warming and ozone-depleting chemicals into the atmosphere, according to a new study.

New research suggests that the thousands of buildings destroyed and damaged during the 9.0 magnitude earthquake and tsunami that struck Japan four years ago released 6,600 metric tons (7,275 U.S. tons) of gases stored in insulation, appliances and other equipment into the atmosphere.


An air quality monitoring station on Cape Ochiishi, on the east side of Hokkaido Island in Japan. Ground-based air monitoring stations in the country recorded high levels of halocarbons following the Tohoku earthquake and tsunami in 2011.

Credit: National Institute for Environmental Studies

Emissions of these chemicals, called halocarbons, increased by 21 percent to 91 percent over typical levels, according to the new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

First look

The study is the first to look at how the Tohoku earthquake affected the release of halocarbons into the atmosphere and likely one of the first to examine emissions of these gases following a natural disaster, according to the study’s authors.

“What we found is a new mechanism of halocarbon emissions coming from the earthquake,” said Takuya Saito, a senior researcher at the National Institute for Environmental Studies in Tsukuba, Japan, and lead author of the new paper.

Halocarbons released as a result of the earthquake include chemicals that deplete the ozone layer and contribute to global warming – including some gases that are no longer used because of those harmful effects on the environment. These include chlorofluorocarbons like CFC-11, a powerful ozone-depleting chemical used in foam insulation until it was phased out in 1996, and hydrochlorofluorocarbons like HCFC-22, an ozone-depleting refrigerant that is also a powerful greenhouse gas and is in the process of being phased out of use. Among other halocarbons released by the earthquake were hydrofluorocarbons, or HFCs, and sulfur hexafluoride, both potent greenhouse gases.

The emissions of the six halocarbons released from Japan in 2011 are equivalent to the discharge of 1,300 metric tons (1,433 U.S. tons) of CFC-11 alone — equal to the amount of CFC-11s found in 2.9 million refrigerators manufactured before the chemical was banned. The total emissions of the six chemicals are also equivalent to the release of 19.2 million metric tons (21.2 million U.S. tons) of carbon dioxide into the atmosphere – an amount equal to about 10 percent of Japanese vehicle emissions in 2011, according to the study’s authors.

Post-quake surprise

Saito and his colleagues decided to investigate halocarbon emissions and their relationship to the earthquake after ground-based air monitoring stations in Japan recorded surprising high levels of these chemicals. The stations are on Hateruma Island, east of Taiwan; Cape Ochiishi, on the east side of Hokkaido; and Ryori, north of Tokyo on Honshu.

The study’s authors combined these measurements with an atmospheric model and other mathematical methods to figure out that increased emissions from the earthquake were involved, how much of the emissions could be attributed to the disaster and how they compared to previous years.

They found that emissions of all six halocarbons were higher from March 2011 to February 2012, following the earthquake, than they were during the same time the year before the event and during the same period the year after it.

About 50 percent of the halocarbon emissions after the earthquake were of HCFC-22, likely due to damage to refrigerators and air conditioners. Emissions of the gas were 38 percent higher than the years before and after the earthquake. Emissions of CFC-11 were 72 percent higher than emissions before and after the earthquake, likely due to damage to insulation foams used in appliances and buildings, according to the study. Emissions of two types of HFCs — HFC-134a and HFC-32 — rose by 49 percent and 63 percent compared to the years before and after the disaster.

Impacts assessed

The new study also calculates the total impact of the increased emissions on ozone depletion and global warming. The earthquake-triggered surge of halocarbons increased ozone loss from Japanese emissions of those six gases by 38 percent* from March 2011 to February 2012 compared to the same time period in the years before and after the event. The amount of heat trapped in the atmosphere because of Japan’s emissions of those six gases rose 36 percent from March 2011 to February 2012 compared to earlier and later years because of the extra emissions from the earthquake, according to the new study.

Saito said the new study shows the importance of including the release of gases from natural disasters in emissions estimates. Although the global effect of one event is small — emissions associated with the Tohoku earthquake accounted for 4 percent or less of global emissions in 2011 — the cumulative effect could be larger, he said. Natural disasters accelerate the release of halocarbons and replacement of these gases could lead to the use of more halocarbons, according to the study.

National halocarbon emissions estimates by the Japanese government did not factor in the release of the chemicals due to the earthquake and are likely underestimating the amount of these substances in the atmosphere, according to Saito. Governments rely on inventories of chemicals and generic data about how they are used to estimate their amounts in the atmosphere – called a “bottom-up” approach” — whereas the new study uses actual measurements of the gases – called a “top-down” approach. “It is apparent that there are unreported emissions,” Saito said.

The new study shows that there could be a need to include the amount of halocarbons released by catastrophic events in emissions estimates, said Steve Montzka, a research chemist at the National Oceanic and Atmospheric Administration in Boulder, Colorado, who was not involved in the research. It also highlights the need for more measurements of halocarbons in the atmosphere, he added, rather than relying on bottom-up emissions estimates from inventories.

“Atmospheric scientists often say that relying solely on bottom-up inventories to tell you how greenhouse gas emissions change is like going on a diet without weighing yourself,” Montzka said.

*Note: This value has been corrected from the accepted manuscript posted online.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation onFacebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL062814/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.
Title
“Extraordinary halocarbon emissions initiated by the 2011 Tohoku earthquake”

Authors:
Takuya Saito: National Institute for Environmental Studies, Tsukuba, Japan;

Xuekun Fang: Norwegian Institute for Air Research, Kjeller, Norway; and State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China;

Andreas Stohl: Norwegian Institute for Air Research, Kjeller, Norway;

Yoko Yokouchi and Jiye Zeng: National Institute for Environmental Studies, Tsukuba, Japan;

Yukio Fukuyama: Japan Meteorological Agency, Tokyo, Japan;

Hitoshi Mukai: National Institute for Environmental Studies, Tsukuba, Japan.

Contact Information for the Authors:
Takuya Saito: saito.takuya@nies.go.jp

Xuekun Fang: fangxuekun@gmail.com, +1 (617) 955-9144.

Andreas Stohl: ast@nilu.no, +49-89-374-18029


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

Nanci Bompey | American Geophysical Union
Further information:
http://www.agu.org

Further reports about: AGU Atmosphere EMISSIONS Tohoku earthquake chemicals earthquake estimates gases greenhouse ozone

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>