Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beetroot juice boosts stamina

10.08.2009
Drinking beetroot juice boosts your stamina and could help you exercise for up to 16% longer. A University of Exeter led-study, published today (Thursday 6 August 2009), shows for the first time how the nitrate contained in beetroot juice leads to a reduction in oxygen uptake, making exercise less tiring.

The study reveals that drinking beetroot juice reduces oxygen uptake to an extent that cannot be achieved by any other known means, including training.

The research team believes that the findings could be of great interest to endurance athletes. They could also be relevant to elderly people or those with cardiovascular, respiratory or metabolic diseases.

The research team conducted their study with eight men aged between 19 and 38. They were given 500ml per day of organic beetroot juice for six consecutive days before completing a series of tests, involving cycling on an exercise bike. On another occasion, they were given a placebo of blackcurrant cordial for six consecutive days before completing the same cycling tests.

After drinking beetroot juice the group was able to cycle for an average of 11.25 minutes, which is 92 seconds longer than when they were given the placebo. This would translate into an approximate 2% reduction in the time taken to cover a set distance. The group that had consumed the beetroot juice also had lower resting blood pressure.

The researchers are not yet sure of the exact mechanism that causes the nitrate in the beetroot juice to boost stamina. However, they suspect it could be a result of the nitrate turning into nitric oxide in the body, reducing the oxygen cost of exercise.

The research was carried out by the University of Exeter and Peninsula Medical School and published in the Journal of Applied Physiology. The research team now hopes to conduct further studies to try to understand in more detail the effects of nitrate-rich foods on exercise physiology.

Corresponding author of the study, Professor Andy Jones of the University of Exeter's School of Sport and Health Sciences, said: "Our study is the first to show that nitrate-rich food can increase exercise endurance. We were amazed by the effects of beetroot juice on oxygen uptake because these effects cannot be achieved by any other known means, including training. I am sure professional and amateur athletes will be interested in the results of this research. I am also keen to explore the relevance of the findings to those people who suffer from poor fitness and may be able to use dietary supplements to help them go about their daily lives."

This study follows research by Barts and the London School of Medicine and the Peninsula Medical School (published in February 2008 in the American Heart Association journal Hypertension), which found that beetroot juice reduces blood pressure.

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>