Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beefing up the Sunday roast

05.08.2008
The Sunday roast on our dinner tables has the potential to be packed with bags more natural flavour, say scientists at The University of Nottingham.

Professor Kin-Chow Chang, of the University’s School of Veterinary Medicine and Science, is leading a three-year study into two different muscle fibre types that play a huge part in the appearance, texture and taste of the meat that we eat.

In the long-term, the results from studies like these could arm farmers with more information on which animals to use for breeding to achieve the tastiest cuts of meat without sacrificing high production values.

Professor Chang’s study, funded with more than £400,000 from the Biotechnology and Biological Sciences Research Council, will focus on the differences between fast muscle fibres and slow muscle fibres.

Slow muscle fibres, otherwise known as oxidative or red muscle, is associated with the most sought-after qualities of meat such as flavour intensity or tenderness whereas meat from fast muscle fibres, which tend to be bulkier and grow more rapidly, is considered to be tougher and drier.

Packed with capillaries, mitochondria and myoglobin that give the meat its darker colour, slow muscle fibres are more efficient at converting sugar and fatty acids to energy and, although slower to contract, will therefore function for longer before tiring. These are usually associated with animals that are living free range and are on the move for longer and produce flavoursome meat.

Farmers and consumers are currently faced with the problem that breeds chosen because they can grow quicker and produce larger quantities of meat and are therefore economically more attractive tend to predominantly produce fast muscle.

Professor Chang said: “Genetically, we have been very successful in breeding animals that can grow very quickly but the down side is that comes at the price of eating quality.

“The work we are doing focuses on finding out more at a molecular level about how fast muscle can switch to slow muscle and could lead to a better understanding of how to genetically choose animals for breeding that will produce better quality meat.”

The issue of fast and slow muscle affects all meat but is particularly pertinent to pork, chicken, lamb and beef in which animals are chosen for breeding according to how fast they grow and how much meat each animal can produce.

For example, in poultry farming broiler chickens take just six weeks to grow from hatching to slaughter and grow much faster than hens produced for egg production. However, the breast meat produced is often criticised as being bland in flavour.

The lab-based science being conducted at Nottingham is concentrating on a particular cell signalling pathway called the calcineuring pathway which, if stimulated, causes muscle to switch from fast to slow.

Learning more about this process could lead to the identification of genes important in the growth of slow muscle and allow farmers to use the wealth of genetic diversity that exists in animals to breed naturally tastier and succulent meat.

Part of the funding for the project will come from the pharmaceutical company Pfizer as an industrial partnership, reflecting the potential that the project may have in the development of new pharmacological products to safely target the growth of slow muscle in existing meat-producing breeds.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Beefing_up_the_Sunday_roast.html

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>