Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bedrock of a Holy City: the Historical Importance of Jerusalem's Geology

22.10.2009
Jerusalem's geology has been crucial in molding it into one of the most religiously important cities on the planet, according to a new study.

It started in the year 1000 BCE, when the Jebusite city's water system proved to be its undoing. The Spring of Gihon sat just outside the city walls, a vital resource in the otherwise parched region. But King David, intent on taking the city, sent an elite group of his soldiers into a karst limestone tunnel that fed the spring.

His men climbed up through a cave system hollowed out by flowing water, infiltrated beneath the city walls, and attacked from the inside. David made the city the capital of his new kingdom, and Israel was born.

In a new analysis of historical documents and detailed geological maps, Michael Bramnik of Northern Illinois University added new geological accents to this pivotal moment in human history in a presentation Tuesday, October 20 at the annual meeting of the Geological Society of America in Portland.

“The karst geology played a major role in the city's selection by David for his capital,” Bramnik said.

It proved to be a wise decision. One of David's successors, King Hezekiah watched as the warlike Assyrian horde, a group of vastly superior warriors toppled city after city in the region. Fearing that they'd soon come for Jerusalem, he too took advantage of the limestone bedrock and dug a 550 meter-long (1804 feet) tunnel that rerouted the spring’s water inside the city's fortified walls.

The Assyrians laid siege to the city in 701 BCE, but failed to conquer it. It was the only city in history to successfully fend them off.

“Surviving the Assyrian siege put it into the people's minds that it was because of their faith that they survived,” Bramnik said. “So when they were captured by the Babylonians in 587, they felt it was because their faith had faltered.”

Until then, the Jewish religion had been loosely associated. But that conviction united the Jews through the Babylonian Captivity, “and so began modern congregational religion,” Bramnik said.

In an arid region rife with conflict, water security is as important today as it was during biblical times. While the groundwater for Jerusalem is recharged surface waters in central Israel, other settlements' water sources are not publicly available for research. Bramnik's efforts to find detailed hydrological maps were often rebuffed, or the maps were said to be non-existent.

“I think Jerusalem's geology and the geology of Israel is still significant to life in the region, perhaps even reaching into the political arena,” he said.

View abstract at http://gsa.confex.com/gsa/2009AM/finalprogram/abstract_163860.htm.

**CONTACT INFORMATION**

For on-site assistance during the 2009 Annual Meeting, 18-21 October, contact Christa Stratton in the Newsroom (7:30 a.m.-6:00 p.m. PDT), Oregon Convention Center, Room D133, +1-503-963-5708.

After the meeting contact:
Michael Bramnik
Department of Geology and Environmental Geoscience / Department of History
Northern Illinois University
Davis Hall 312, Normal Road
DeKalb, IL 60115
mbramnik@niu.edu
For more information on the 2009 Meeting, visit http://www.geosociety.org/meetings/2009/.

Christa Stratton | Newswise Science News
Further information:
http://www.geosociety.org

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>