Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bedrock of a Holy City: the Historical Importance of Jerusalem's Geology

Jerusalem's geology has been crucial in molding it into one of the most religiously important cities on the planet, according to a new study.

It started in the year 1000 BCE, when the Jebusite city's water system proved to be its undoing. The Spring of Gihon sat just outside the city walls, a vital resource in the otherwise parched region. But King David, intent on taking the city, sent an elite group of his soldiers into a karst limestone tunnel that fed the spring.

His men climbed up through a cave system hollowed out by flowing water, infiltrated beneath the city walls, and attacked from the inside. David made the city the capital of his new kingdom, and Israel was born.

In a new analysis of historical documents and detailed geological maps, Michael Bramnik of Northern Illinois University added new geological accents to this pivotal moment in human history in a presentation Tuesday, October 20 at the annual meeting of the Geological Society of America in Portland.

“The karst geology played a major role in the city's selection by David for his capital,” Bramnik said.

It proved to be a wise decision. One of David's successors, King Hezekiah watched as the warlike Assyrian horde, a group of vastly superior warriors toppled city after city in the region. Fearing that they'd soon come for Jerusalem, he too took advantage of the limestone bedrock and dug a 550 meter-long (1804 feet) tunnel that rerouted the spring’s water inside the city's fortified walls.

The Assyrians laid siege to the city in 701 BCE, but failed to conquer it. It was the only city in history to successfully fend them off.

“Surviving the Assyrian siege put it into the people's minds that it was because of their faith that they survived,” Bramnik said. “So when they were captured by the Babylonians in 587, they felt it was because their faith had faltered.”

Until then, the Jewish religion had been loosely associated. But that conviction united the Jews through the Babylonian Captivity, “and so began modern congregational religion,” Bramnik said.

In an arid region rife with conflict, water security is as important today as it was during biblical times. While the groundwater for Jerusalem is recharged surface waters in central Israel, other settlements' water sources are not publicly available for research. Bramnik's efforts to find detailed hydrological maps were often rebuffed, or the maps were said to be non-existent.

“I think Jerusalem's geology and the geology of Israel is still significant to life in the region, perhaps even reaching into the political arena,” he said.

View abstract at


For on-site assistance during the 2009 Annual Meeting, 18-21 October, contact Christa Stratton in the Newsroom (7:30 a.m.-6:00 p.m. PDT), Oregon Convention Center, Room D133, +1-503-963-5708.

After the meeting contact:
Michael Bramnik
Department of Geology and Environmental Geoscience / Department of History
Northern Illinois University
Davis Hall 312, Normal Road
DeKalb, IL 60115
For more information on the 2009 Meeting, visit

Christa Stratton | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>