Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Battling Brittle Bones ... With Broccoli and Spinach?

Engineering Researchers at Rensselaer Polytechnic Institute Pinpoint the Origin of Bone Fractures
A new study from engineering researchers at Rensselaer Polytechnic Institute shows, for the first time, how the little-understood protein osteocalcin plays a significant role in the strength of our bones. The findings could lead to new strategies and therapeutics for fighting osteoporosis and lowering the risk of bone fracture.

Funded by the U.S. National Institutes of Health, the study details how fractures in healthy bones begin with the creation of incredibly tiny holes, each measuring only about 500 atoms in diameter, within the bone’s mineral structure. In the case of a slip, trip, or fall, the force of the impact on a bone physically deforms a pair of joined proteins, osteopontin and osteocalcin, and results in the formation of nanoscale holes. These holes, called dilatational bands, function as a natural defense mechanism, and help to prevent further damage to the surrounding bone. However, if the force of the impact is too great—or if the bone is lacking osteopontin, osteocalcin, or both—the bone will crack and fracture.

The multi-university study, led by Deepak Vashishth, head of the Department of Biomedical Engineering at Rensselaer, is the first to give evidence of fracture at the level of bone’s nanostructure. Partnering with Rensselaer on the study were Villanova University, the Hospital for Special Surgery in New York, and Yale University.

“This study is important because it implicates, for the first time, the role of osteocalcin in giving bone the ability to resist fracture,” Vashishth said. “Since osteocalcin is always the point of fracture, we believe that strengthening it could lead to a strengthening of the overall bone.”

Long known but little understood, the protein osteocalin has been produced by and present in animal bones since before the dawn of humanity. Recently, abnormalities in ostoecalcin production have been associated with type 2 diabetes as well as problems in reproductive health. Vashishth’s new study, however, is the first to explain the structural and mechanical importance of osteocalcin in bone.

Now that osteocalcin is known to participate in bone fracture, new strategies for strengthening the bond between osteocalin and osteopontin can be investigated, Vashishth said. Augmenting the body’s natural supply of osteocalcin, for example, could be one possible strategy for treating osteoporosis and other conditions leading to increased fracture risk, he said. Osteocalin must be in its carboxylated form to get absorbed into bone, and the protein is carboxylated by vitamin K. Vashishth said future studies could investigate the relation between vitamin K intake, osteocalcin, and bone strength.

“Currently, all of the advice for treating osteoporosis is related to calcium. We believe there’s more to the story than just calcium, and the results of this new study raise an important question about vitamin K. Leafy green vegetables are the best source of vitamin K—wouldn’t it be great if eating spinach and broccoli was not only healthy, but also good for your bones? We plan to investigate this link in future,” Vashisth said.

Results of the new study, titled “Dilatational band formation in bone,” were recently published online by Proceedings of the National Academy of Sciences, and will appear in an upcoming print edition of the journal. The study may be viewed online at:

At Rensselaer, this research was conducted in the laboratories of the Center for Biotechnology and Interdisciplinary Studies.

Along with Vashisth, co-authors of the paper are Rensselaer BME graduate students Atharva Poundarik and, Tamim Diab, BME post-doctoral fellows Grazyna Sroga, and Ani Ural (currently a faculty member at Villanova University), Adele Boskey of the Musculoskeletal Integrity Program at the Hospital for Special Surgery in New York, and Caren Gundberg of the Department of Orthopedics and Rehabilitation at Yale University.

For more information on Vashishth and his research at Rensselaer, visit:

Faculty Home Page
New Technique Yields Troves of Information From Nanoscale Bone Samples
Proteins To Yield New Clues in Fight Against Osteoporosis
Rensselaer Professor Deepak Vashishth Named Fellow of AIMBE
Rensselaer Department of Biomedical Engineering
Contact: Michael Mullaney
Phone: (518) 276-6161

Michael Mullaney | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>