Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bath researchers study how cancer cells come unstuck

22.08.2008
Scientists in the Department of Biology & Biochemistry at the University of Bath have started a three year study into the junctions that hold cells together, giving insight into how cancer cells can break off and spread to other parts of the body.

Cancer affects one in three people at some point in their lives, with most cancer deaths being caused by the development of secondary tumours in other parts of the body. This research, funded by leading medical charity Cancer Research UK, could help scientists better understand what causes cancer to spread and may suggest new ways it could be treated in the future.

Normal cells are held together by junctions on the cell surface, but in some cancers these junctions are lost. This makes the cancerous cells more likely to break off and spread tumours to other parts of the body. Dr Andrew Chalmers and Dr Paul Whitley, both lecturers from the Department of Biology & Biochemistry, are studying how a group of proteins called ESCRTs are involved in the loss of these junctions in kidney and intestine cells.

“ESCRTs are like the recycling units of the cell; they oversee the constant intake, break down and replenishing of junctions on the cell surface,” explained Dr Chalmers.

“In a cancer cell where ESCRTs are damaged, the junctions may not be restored properly; this can cause cells to separate and migrate to form secondary tumours in other parts of the body.

“Previous studies have shown a link between ESCRTs and the loss of junctions in cells of fruit flies, so we want to see whether this is also true in humans.”

During this three year project, the researchers plan to block ESCRTs in cells grown in the lab to see the effects on the junctions. They will also be looking at whether mutations of ESCRTs are more common in certain types of cancer.

Dr Paul Whitley added: “This work should tell us more about the role of ESCRTs in cancer and provide possible new targets for therapy in the future.”

Vicky Just | alfa
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/bio-sci/about/index.html

Further reports about: Biochemistry Biology Cancer ESCRTs cancer cells intestine cells secondary tumours

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>