Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria use 'toxic darts' to disable each other, according to UCSB scientists

19.11.2010
In nature, it's a dog-eat-dog world, even in the realm of bacteria. Competing bacteria use "toxic darts" to disable each other, according to a new study by UC Santa Barbara biologists. Their research is published in the journal Nature.

"The discovery of toxic darts could eventually lead to new ways to control disease-causing pathogens," said Stephanie K. Aoki, first author and postdoctoral fellow in UCSB's Department of Molecular, Cellular, and Developmental Biology (MCDB). "This is important because resistance to antibiotics is on the rise."

Second author Elie J. Diner, a graduate student in biomolecular sciences and engineering, said: "First we need to learn the rules of this bacterial combat. It turns out that there are many ways to kill your neighbors; bacteria carry a wide range of toxic darts."

The scientists studied many bacterial species, including some important pathogens. They found that bacterial cells have stick-like proteins on their surfaces, with toxic dart tips. These darts are delivered to competing neighbor cells when the bacteria touch. This process of touching and injecting a toxic dart is called "contact dependent growth inhibition," or CDI.

Some targets have a biological shield. Bacteria protected by an immunity protein can resist the enemy's disabling toxic darts. This immunity protein is called "contact dependent growth inhibition immunity." The protein inactivates the toxic dart.

The UCSB team discovered a wide variety of potential toxic-tip proteins carried by bacteria cells –– nearly 50 distinct types have been identified so far, according to Christopher Hayes, co-author an associate professor at MCDB. Each bacterial cell must also have immunity to its own toxic dart. Otherwise, carrying the ammunition would cause cell suicide.

Surprisingly, when a bacterial cell is attacked –– and has no immunity protein –– it may not die. However, it often ceases to grow. The cell is inactivated, inhibited from growth. Similarly, many antibiotics do not kill bacteria; they only prevent the bacteria from growing. Then the body flushes out the dormant cells.

Some toxic tips appear to function inside the targeted bacteria by cutting up enemy RNA so the cell can no longer synthesize protein and grow. Other toxic tips operate by cutting up enemy DNA, which prevents replication of the cell.

"Our data indicate that CDI systems are also present in a broad range of bacteria, including important plant and animal pathogens such as E. coli which causes urinary tract infections, and Yersinia species, including the causative agent of plague," said senior author David Low, professor of MCDB. "Bacteria may be using these systems to compete with one another in the soil, on plants, and in animals. It's an amazingly diverse world."

The team studied the bacteria responsible for soft rot in potatoes, called Dickeya dadantii. This bacteria also invades chicory leaves, chrisanthemums, and other vegetables and plants.

Funding for this research came from the National Science Foundation and the National Institutes of Health. The TriCounty Blood Bank also provided funding.

The research was performed in the Low and Hayes lab in MCDB. Important contributions were made Stephen J. Poole, associate professor in MCDB, and by Peggy Cotter's lab when she was with MCDB. Cotter has since moved to the University of North Carolina School of Medicine. Other co-authors include Claire t'Kint de Roodenbeke, research associate; Brandt R. Burgess, postdoctoral fellow; Bruce A. Braaten, research scientist; Alison M. Jones, technician; and Julia S. Webb, graduate student.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>