Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why our backs can't read braille

20.12.2012
Scientists map sensory nerves in mouse skin

Johns Hopkins scientists have created stunning images of the branching patterns of individual sensory nerve cells.


The twisted pathway of a single nerve cell in the skin on the back of a mouse. This particular cell has wrapped itself around at least 140 hair follicles.

Credit: Hao Wu

Their report, published online in the journal eLife on Dec. 18, details the arrangement of these branches in skin from the backs of mice. The branching patterns define ten distinct groups that, the researchers say, likely correspond to differences in what the nerves do and could hold clues for pain management and other areas of neurological study.

Each type of nerve cell that the team studied was connected at one end to the spinal cord through a thin, wire-like projection called an axon. On the other side of the cell's "body" was another axon that led to the skin. The axons branched in specific patterns, depending on the cell type, to reach their targets within the skin. "The complexity and precision of these branching patterns is breath-taking," says Jeremy Nathans, M.D., Ph.D., a Howard Hughes researcher and professor of molecular biology and genetics at the Institute for Basic Biomedical Sciences at the Johns Hopkins School of Medicine.

Skin is the body's largest sensory organ, and the nerves that pervade it are responsible for sending signals to the brain—signals¬ perceived as sensations of pain, temperature, pressure and itch, to name a few. Stimuli that prompt signals, like a change in temperature, can come directly from the skin, or they can come from hair follicles embedded in the skin. Each hair follicle consists of a tiny cylinder of cells within the skin that surrounds the root of an individual hair.

Nathans says that many axons catalogued in their study wrapped themselves around hair follicles. Different types of axons contact the follicles in different ways and at different depths within the skin, presumably to collect particular kinds of information.

One of the challenges in visualizing axons arises because their overlapping, maze-like pathways make it very difficult to tell one from another. To overcome this hurdle, Nathans' team, led by Hao Wu, Ph.D., a post-doctoral fellow in his lab, used a genetic trick to randomly color just a few dozen nerve cells out of the thousands in the skin of developing mice. Then Wu and colleague John Williams used software to trace the pattern of each nerve cell.

The axons of one type of nerve cell, for example, surrounded only a single hair follicle, its ends looking like a bear trap because of the vertical peaks flanking each hair column. Another type, accounting for 50 per cent of those the researchers saw, had 75 branch points, on average, allowing it to cover much larger areas and contact about 50 hair follicles per axon.

The axons of other nerve cell types were simpler and shorter, branching less but still encircling, like the tendrils of a vine, multiple hair follicles. Still another type had endings that appeared more like brambles—less organized and bushier and without any connections to hair follicles. These types, too, could be more or less branched and, therefore, covered a particular area of skin more or less densely.

One of the most remarkable axon patterns looked like an extensive vine on a trellis, with its tendrils wrapping around approximately 200 hair follicles (see image). The total length of one of these axons, with all its branches, was several times longer than the body of a mouse.

Nathans says the images now in hand will help scientists "make more sense" out of known responses to stimulation of the skin. For example, if a single nerve cell is responsible for monitoring a patch of skin a quarter of an inch square, multiple simultaneous points of pressure within that patch will only be perceived by the brain as a single signal. "That is why we can't read Braille using the skin on our backs: the multiple bumps that make up a Braille symbol are within such a small area that the axon branches can't distinguish them. By contrast, each sensory axon on the fingertip occupies a much smaller territory and this permits our fingertips to accurately distinguish small objects."

Nathans hopes that this new data can be paired with molecular and neurological data to determine the unique functions of each class of nerve cell that targets the skin. But he cautions that the ten categories they found are probably not exhaustive. "We know that there are other types of nerve endings in highly sensitive areas like our fingertips and lips. Even within the skin on the backs of mice, we suspect that our technique was not able to capture every type of nerve cell."

Many unanswered questions remain in this area, says Nathans, especially how these "beautiful branching patterns" are produced during embryonic development and what role(s) each type of nerve cell plays.

This work was supported by grants from the Human Frontier Science Program, the Johns Hopkins Brain Sciences Institute and the Howard Hughes Medical Institute.

On the Web:

Link to article in eLife: http://dx.doi.org/10.7554/eLife.00181

Nathans lab: http://neuroscience.jhu.edu/JeremyNathans.php

Nathans HHMI profile: http://www.hhmi.org/research/investigators/nathans_bio.html

Catherine Kolf | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Biomedical Science Braille Science TV cell type hair follicle nerve cell

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>