Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back to the Dead (Sea, That Is)

23.12.2010
Unprecedented TAU climate change study digs into half a million years of history

They'll drill through four ice ages, epic sandstorms, mankind's migration from Africa to the New World, and the biggest droughts in history. Tel Aviv University is heading an international study that for the first time will dig deep beneath the Dead Sea, 500 meters (about a third of a mile) down under 300 meters (about a fifth of a mile) of water. Drilling with a special rig, the researchers will look back in time to collect a massive amount of information about climate change and earthquake patterns.

The study, led by Prof. Zvi Ben-Avraham of Tel Aviv University's Minerva Dead Sea Research Center, "aims to get a complete record in unprecedented resolution — at one year intervals — of the last 500 thousand years,” says Prof. Ben-Avraham.

A crazy sandstorm 365,250 years ago?

Looking at the core sample to be dug about five miles offshore near Ein Gedi, the researchers hope to pinpoint particular years in Earth history to discover the planet's condition. They'll be able to see what the climate was like 365,250 years ago, for instance, or determine the year of a catastrophic earthquake.

This is by far the largest Earth sciences study of its kind in Israel. The evidence will help the world's climatologists calibrate what they know about climate change from other geological samples — and may lead to better predictions of what's in store for Middle East weather. For example, are currently increasing dry and hot periods in the region something new, or are they part of some larger cyclical pattern? What they find should also shed light on earthquake patterns — important information for Israelis, Jordanians and Palestinians who live on or around the fault line that passes through the Dead Sea region.

Slicing through a geological cake

"The sediments provide an 'archive' of the environmental conditions that existed in the area in its geological past," Prof. Ben-Avraham says. While the sample being collected isn't as deep as oil explorers drill to look for oil, the core will be something special: it will be kept in an unbroken piece so that records can be traced more accurately.

The study is being supported by the Israel Sciences Academy and includes dozens of scientists from America, Germany, Switzerland, Norway, Japan, and Israel. Scientists from Jordan and the Palestinian Authority are also cooperating on this unique event. The researchers come from a variety of disciplines, from environmental science to chemistry, and each will get different parts of the core to analyze.

Prof. Ben-Avraham himself is particularly interested in chemical changes to the sediment in the Dead Sea over the last half million years. The study, he adds, will shed light on human migration patterns through the region.

At 423 meters, or a quarter of a mile, below sea level, the Dead Sea is the lowest place on earth. Today it draws millions of tourists from around the world to enjoy its legendarily healing properties.

For coverage of this research in The New York Times, please see:
http://www.nytimes.com/2010/12/18/world/middleeast/18deadsea.html

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Dead Sea Dead Sea region Earth's magnetic field sea snails

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>