Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back to the Dead (Sea, That Is)

23.12.2010
Unprecedented TAU climate change study digs into half a million years of history

They'll drill through four ice ages, epic sandstorms, mankind's migration from Africa to the New World, and the biggest droughts in history. Tel Aviv University is heading an international study that for the first time will dig deep beneath the Dead Sea, 500 meters (about a third of a mile) down under 300 meters (about a fifth of a mile) of water. Drilling with a special rig, the researchers will look back in time to collect a massive amount of information about climate change and earthquake patterns.

The study, led by Prof. Zvi Ben-Avraham of Tel Aviv University's Minerva Dead Sea Research Center, "aims to get a complete record in unprecedented resolution — at one year intervals — of the last 500 thousand years,” says Prof. Ben-Avraham.

A crazy sandstorm 365,250 years ago?

Looking at the core sample to be dug about five miles offshore near Ein Gedi, the researchers hope to pinpoint particular years in Earth history to discover the planet's condition. They'll be able to see what the climate was like 365,250 years ago, for instance, or determine the year of a catastrophic earthquake.

This is by far the largest Earth sciences study of its kind in Israel. The evidence will help the world's climatologists calibrate what they know about climate change from other geological samples — and may lead to better predictions of what's in store for Middle East weather. For example, are currently increasing dry and hot periods in the region something new, or are they part of some larger cyclical pattern? What they find should also shed light on earthquake patterns — important information for Israelis, Jordanians and Palestinians who live on or around the fault line that passes through the Dead Sea region.

Slicing through a geological cake

"The sediments provide an 'archive' of the environmental conditions that existed in the area in its geological past," Prof. Ben-Avraham says. While the sample being collected isn't as deep as oil explorers drill to look for oil, the core will be something special: it will be kept in an unbroken piece so that records can be traced more accurately.

The study is being supported by the Israel Sciences Academy and includes dozens of scientists from America, Germany, Switzerland, Norway, Japan, and Israel. Scientists from Jordan and the Palestinian Authority are also cooperating on this unique event. The researchers come from a variety of disciplines, from environmental science to chemistry, and each will get different parts of the core to analyze.

Prof. Ben-Avraham himself is particularly interested in chemical changes to the sediment in the Dead Sea over the last half million years. The study, he adds, will shed light on human migration patterns through the region.

At 423 meters, or a quarter of a mile, below sea level, the Dead Sea is the lowest place on earth. Today it draws millions of tourists from around the world to enjoy its legendarily healing properties.

For coverage of this research in The New York Times, please see:
http://www.nytimes.com/2010/12/18/world/middleeast/18deadsea.html

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Dead Sea Dead Sea region Earth's magnetic field sea snails

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>