Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baby's innate number sense predicts future math skill

23.10.2013
Sense of quantity is there before the words or numbers

Babies who are good at telling the difference between large and small groups of items even before learning how to count are more likely to do better with numbers in the future, according to new research from the Duke Institute for Brain Sciences.

The use of Arabic numerals to represent different values is a characteristic unique to humans, not seen outside our species. But we aren't born with this skill. Infants don't have the words to count to 10. So, scientists have hypothesized that the rudimentary sense of numbers in infants is the foundation for higher-level math understanding.

A new study, appearing online in the Oct. 21 Proceedings of the National Academy of Sciences, suggests that children do, in fact, tap into this innate numerical ability when learning symbolic mathematical systems. The Duke researchers found that the strength of an infant's inborn number sense can be predictive of the child's future mathematical abilities.

"When children are acquiring the symbolic system for representing numbers and learning about math in school, they're tapping into this primitive number sense," said Elizabeth Brannon, Ph.D., a professor of psychology and neuroscience, who led the study. "It's the conceptual building block upon which mathematical ability is built."

Brannon explained that babies come into the world with a rudimentary understanding referred to as a primitive number sense. When looking at two collections of objects, primitive number sense allows them to identify which set is numerically larger even without verbal counting or using Arabic numerals. For example, a person instinctively knows a group of 15 strawberries is more than six oranges, just by glancing.

Understanding how infants and young children conceptualize and understand number can lead to the development of new mathematics education strategies, said Brannon's colleague, Duke psychology and neuroscience graduate student Ariel Starr. In particular, this knowledge can be used to design interventions for young children who have trouble learning mathematics symbols and basic methodologies.

To test for primitive number sense, Brannon and Starr analyzed 48 6-month-old infants to see whether they could recognize numerical changes, capitalizing on the interest most babies show in things that change. They placed each baby in front of two screens, one that always showed the same number of dots (e.g., eight), changing in size and position, and another that switched between two different numerical values (e.g., eight and 16 dots). All the arrays of dots changed frequently in size and position. In this task, babies that could tell the difference between the two numerical values (e.g., eight and 16) looked longer at the numerically changing screen.

Brannon and Starr then tested the same children at 3.5 years of age with a non-symbolic number comparison game. The children were shown two different arrays and asked to choose which one had more dots without counting them. In addition, the children took a standardized math test scaled for pre-schoolers, as well as a standardized IQ test. Finally, the researchers gave the children a simple verbal task to identify the largest number word each child could concretely understand.

"We found that infants with higher preference scores for looking at the numerically changing screen had better primitive number sense three years later compared to those infants with lower scores," Starr said. "Likewise, children with higher scores in infancy performed better on standardized math tests."

Brannon said the findings point to a real connection between symbolic math and quantitative abilities that are present in infancy before education takes hold and shapes our mathematical abilities.

"Our study shows that infant number sense is a predictor of symbolic math," Brannon said. "We believe that when children learn the meaning of number words and symbols, they're likely mapping those meanings onto pre-verbal representations of number that they already have in infancy," she said.

"We can't measure a baby's number sense ability at 6 months and know how they'll do on their SATs," Brannon added. "In fact our infant task only explains a small percentage of the variance in young children's math performance. But our findings suggest that there is cognitive overlap between primitive number sense and symbolic math. These are fundamental building blocks."

This research was supported by a National Institutes of Health grant R01 HD059108, a National Science Foundation Research and Evaluation on Education in Science Engineering and Developmental and Learning Sciences Grant, a James McDonnell Scholar Award, and a National Science Foundation graduate research fellowship.

CITATION: "Number sense in infancy predicts mathematical abilities in childhood," Ariel Starr, Melissa E. Libertus, Elizabeth M. Brannon. Proceedings of the National Academy of Sciences, October 21, 2013, 10.1073/pnas.1302751110/-/DCSupplemental

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>