Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Babies remember even as they seem to forget

20.12.2011
Fifteen years ago, textbooks on human development stated that babies 6 months of age or younger had no sense of "object permanence" – the psychological term that describes an infant's belief that an object still exists even when it is out of sight. That meant that if mom or dad wasn't in the same room with junior, junior didn't have the sense that his parents were still in the world.

These days, psychologists know that isn't true: for young babies, out of sight doesn't automatically mean out of mind. But how much do babies remember about the world around them, and what details do their brains need to absorb in order to help them keep track of those things?

A new study led by a Johns Hopkins psychologist and child development expert has added a few pieces to this puzzle. Published in a recent issue of the journal Psychological Science, the study reveals that even though very young babies can't remember the details of an object that they were shown and which then was hidden, the infants' brains have a set of built in "pointers" that help them retain a notion that something they saw remains in existence even when they can't see it anymore.

"This study addresses one of the classic problems in the study of infant development: What information do infants need to remember about an object in order to remember that it still exists once it is out of their view?" said Melissa Kibbe, a postdoctoral researcher in the Department of Psychological and Brain Sciences at the Krieger School of Arts and Sciences at Johns Hopkins, who collaborated with colleague Alan Leslie at Rutgers University on the study. "The answer is, very little."

The team found that even though infants cannot remember the shapes of two hidden objects, they are surprised when those objects disappear completely. The conclusion? Infants do, indeed, remember an object's existence without remembering what that object is.

This is important, Kibbe explains, because it sheds light on the brain mechanisms that support memory in infancy and beyond.

"Our results seem to indicate that the brain has a set of 'pointers' that it uses to pick out the things in the world that we need to keep track of," explains Kibbe, who did the majority of the work on this study while pursuing her doctorate in Leslie's laboratory at Rutgers. "The pointer itself doesn't give us any information about what it is pointing to, but it does tell us something is there. Infants use this sense to keep track of objects without having to remember what those objects are."

In addition, the study may help researchers establish a more accurate timeline of the mental milestones of infancy and childhood.

In the study, 6-month-olds watched as a triangle was placed behind a screen and then as a second object (a disk) was placed behind a second screen. Researchers then removed the first screen to reveal either the expected original triangle, the unexpected disk, or nothing at all, as if the triangle had vanished completely.

The team then observed the infants' reactions, measuring how long they looked at expected versus unexpected outcomes.

In the situation where the objects were swapped, the babies seemed to hardly notice a difference, Kibbe said, indicating that they didn't retain a memory of that object's shape. In their minds, a triangle and a disk were virtually interchangeable.

However, when one of the objects had disappeared, the babies were surprised and gazed longer at the empty space, indicating that they expected something to be where something was before.

"In short, they retained an inkling of the object," said Leslie, of Rutgers.

This research was supported by the National Science Foundation.

Read the Psychological Science article here: http://pss.sagepub.com/content/22/12/1500

For more information about Kibbe, go here: http://www.psy.jhu.edu/~labforchilddevelopment/pages/people.html

For more information about Leslie, go here: http://ruccs.rutgers.edu/~aleslie/

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>