Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Babies Are Born With “Intuitive Physics” Knowledge, Says MU Researcher

25.01.2012
Numerous infant studies indicate environmental knowledge is present soon after birth
While it may appear that infants are helpless creatures that only blink, eat, cry and sleep, one University of Missouri researcher says that studies indicate infant brains come equipped with knowledge of “intuitive physics.”

“In the MU Developmental Cognition Lab, we study infant knowledge of the world by measuring a child’s gaze when presented with different scenarios,” said Kristy vanMarle, an assistant professor in the Department of Psychological Sciences in the College of Arts and Science. “We believe that infants are born with expectations about the objects around them, even though that knowledge is a skill that’s never been taught. As the child develops, this knowledge is refined and eventually leads to the abilities we use as adults.”

In a review of related scientific literature from the past 30 years, vanMarle and Susan Hespos of Northwestern University found that the evidence for intuitive physics occurs in infants as young as two months – the earliest age at which testing can occur. At that age, infants show an understanding that unsupported objects will fall and that hidden objects do not cease to exist. Scientific testing also has shown that by five months, infants have an expectation that non-cohesive substances like sand or water are not solid. In a previous publication, vanMarle found that children as young as 10 months consistently choose larger amounts when presented with two different amounts of food substance.

“We believe that infants are born with the ability to form expectations and they use these expectations basically to predict the future,” vanMarle said. “Intuitive physics include skills that adults use all the time. For example, when a glass of milk falls off the table, a person might try to catch the cup, but they are not likely to try to catch the milk that spills out. The person doesn’t have to consciously think about what to do because the brain processes the information and the person simply reacts. The majority of an adult’s everyday interactions with the world are automatic, and we believe infants have the same ability to form expectations, predicting the behavior of objects and substances with which they interact.”

While the intuitive physics knowledge is believed to be present at birth, vanMarle believes parents can assist skill development through normal interaction, such as playing and talking with the child and encouraging him/her to interact with objects.

“Despite the intuitive physics knowledge, a parent probably cannot do much to ‘get their child ahead’ at the infant stage, including exposing him or her to videos marketed to improve math or language skills,” vanMarle said. “Natural interaction with the child, such as talking to him/her, playing peek-a-boo, and allowing him/her to handle safe objects, is the best method for child development. Natural interaction with the parent and objects in the world gives the child all the input that evolution has prepared the child to seek, accept and use to develop intuitive physics.”

The study, “Physics for infants: characterizing the origins of knowledge about objects, substances and number,” is published in the January issue of WIREs Cognitive Science.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>