Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel avian influenza A virus has potential for both virulence and transmissibility in humans

10.09.2013
Virus attaches to both upper and lower respiratory tract epithelium, according to report in The American Journal of Pathology

A new study has found that a novel avian-origin H7N9 influenza A virus, which has recently emerged in humans, attaches moderately or abundantly to the epithelium of both the upper and lower respiratory tracts.

This pattern has not been observed before for avian influenza A viruses. The report, published in the October issue of The American Journal of Pathology, suggests that the emerging H7N9 virus has the potential to cause a pandemic, since it may transmit efficiently in humans and cause severe pneumonia.

The first report of infections of humans with the influenza A virus of the subtype H7N9 surfaced in March 2013. Three patients from eastern China developed severe pneumonia and acute respiratory distress syndrome and died as a result. By May 30, 2013, the H7N9 infection was confirmed in 132 patients from China and Taiwan, 37 of whom died, according to the World Health Organization. Infected poultry were thought to be the source of the virus.

In the current study, investigators focused on the virus' pattern of attachment in order to assess its potential transmissibility and virulence. "Abundant virus attachment to the human upper respiratory tract correlates with efficient transmissibility among humans," explains Thijs Kuiken, DVM, PhD, of the Department of Viroscience at Erasmus University Medical Centre in Rotterdam, The Netherlands. "Virus attachment to Clara cells in the bronchioles and pneumocytes and macrophages in the alveoli correlates with high virulence."

Using virus histochemical analysis, the investigators looked at the pattern of attachment of two genetically engineered emerging H7 viruses (containing the hemagglutinin (HA) of either influenza virus A/Shanghai/1/13 or A/Anhui/1/13) to fixed human respiratory tract tissues and compared the findings to attachment patterns seen with human influenza viruses with high transmissibility but low virulence (seasonal H3N2 and pandemic H1N1) and highly pathogenic avian influenza (HPAI) viruses with low transmissibility and high virulence (H5N1 and H7N7).

They found that like other avian influenza viruses, the H7N9 viruses attached more strongly to lower parts of the human respiratory tract than to upper parts. However, compared to other avian influenza viruses, the attachment to epithelial cells by H7N9 in the bronchioles and alveoli of the lung was more abundant and the viruses attached to a broader range of cell types. "These characteristics fit with increased virulence of these emerging avian H7 viruses compared to that of human influenza viruses," says Dr. Kuiken.

A third notable finding was a more concentrated attachment of H7N9 viruses in ciliated cells of the nasal concha, trachea, and bronchi, suggesting the potential for efficient transmission among humans. "However, the fact that the emerging H7N9 virus has caused infection mainly in individual human cases suggests that it has not acquired all the necessary properties for efficient transmission among humans," notes Dr. Kuiken.

"Our results indicate that based just on the pattern of virus attachment the H7N9 currently emerging in China has the potential both to cause severe pulmonary disease and to be efficiently transmitted among humans," says Dr. Kuiken. He emphasizes that attachment is only the first step in the replication cycle of influenza virus in its host cell, and that other steps, as well as the host response, need to be taken into account to fully understand the potential of these emerging H7 viruses to cause an influenza pandemic.

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>