Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Auto Experts Recognize Cars Like Most People Recognize Faces

02.10.2012
When people – and monkeys – look at faces, a special part of their brain that is about the size of a blueberry “lights up.” Now, the most detailed brain-mapping study of the area yet conducted has confirmed that it isn’t limited to processing faces, as some experts have maintained, but instead serves as a general center of expertise for visual recognition.

Neuroscientists previously established that this region, which is called the fusiform face area (FFA) and is located in the temporal lobe, is responsible for a particularly effective form of visual recognition. But there has been an ongoing debate about whether this area is hard-wired to recognize faces because of their importance to us or if it is a more general mechanism that allows us to rapidly recognize objects that we work with extensively.


Gauthier Lab

The flattened hemisphere of a car expert subject, with hot colors showing areas that were more responsivee for faces, including the fusiform face area outlined in white. The inset shows how the researchers sorted small volumes into those maximally responsive to different categories. It shows considerable territory responding to cars within the FFA.

In the new study published this week in the online early edition of the Proceedings of the National Academy of Sciences, a team of Vanderbilt researchers report that they have recorded the activity in the FFAs of a group of automobile aficionados at extremely high resolution using one the most powerful MRI scanners available for human use and found no evidence that there is a special area devoted exclusively to facial recognition. Instead, they found that the FFA of the auto experts was filled with small, interspersed patches that respond strongly to photos of faces and autos both.

“We can’t say that the same groups of neurons process both facial images and objects of expertise, but we have now mapped the area in enough detail to rule out the possibility of an area exclusively devoted to facial recognition,” said Rankin McGugin, who conducted this research as part of her doctoral dissertation.

According to Isabel Gauthier, the David K. Wilson Chair of Psychology, who directed the study, the demonstration that the FFA can support expertise for other categories may help scientists improve treatments for people who have difficulty recognizing faces, like individuals with autism. In addition, identifying the neural basis of individual differences in learning visual skills is an important step toward mapping the brain chemistry involved in learning may eventually lead to the development of drugs that make it easier for individuals to acquire different kinds of visual expertise.

For most objects, research has shown that people use a piecemeal identification scheme that focuses on parts of the object. By contrast, experts, for faces or for cars, use a more holistic approach that is extremely fast and improves their performance in recognition tasks.

The scientists point out that visual expertise may be more the norm than the exception: “It helps the doctor reading X-rays, the judge looking at show dogs, the person learning to identify birds or to play chess; it even helped us when we learned brain anatomy!” Gauthier said.

Gauthier and her colleagues have further found that people who are better at learning to recognize one subject should also be better at learning another. Recent work by her group found that those who did a better job at identifying objects in which they were most interested were also better at identifying faces.

Christopher Gatenby at the University of Washington and John Gore, director of Vanderbilt’s Institute of Imaging Science, also contributed to the study. The research was supported by the James S. McDonnell Foundation, National Science Foundation grant SBE-0542013, National Eye Institute grant EY013441-06A2 and the Vanderbilt Vision Research Center.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>