Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism skews developing brain with synchronous motion and sound

31.03.2009
Lip-sync could explain staring at people's mouths

Individuals with autism spectrum disorders (ASD) tend to stare at people's mouths rather than their eyes.

Now, an NIH-funded study in 2-year-olds with the social deficit disorder suggests why they might find mouths so attractive: lip-sync—the exact match of lip motion and speech sound. Such audiovisual synchrony preoccupied toddlers who have autism, while their unaffected peers focused on socially meaningful movements of the human body, such as gestures and facial expressions.

"Typically developing children pay special attention to human movement from very early in life, within days of being born. But in children with autism, even as old as two years, we saw no evidence of this," explained Ami Klin, Ph.D., of the Yale Child Study Center, who led the research. "Toddlers with autism are missing rich social information imparted by these cues, and this is likely to adversely affect the course of their development."

Klin, Warren Jones, Ph.D., and colleagues at Yale, report the findings of their study, funded in part by the National Institute of Health's National Institute of Mental Health, online March 29, 2009 in the journal Nature.

For the first time, this study has pinpointed what grabs the attention of toddlers with ASDs," said NIMH Director Thomas R. Insel, M.D. "In addition to potential uses in screening for early diagnosis, this line of research holds promise for development of new therapies based on redirecting visual attention in children with these disorders."

A eureka moment in the research came when researchers followed up on a clue from children's responses to audiovisual synchrony embedded in a nursery rhyme cartoon.

While it was known that people with autism do not spontaneously orient to social signals, it was unclear what early-emerging mechanism may contribute to that. Nor was it clear exactly what they were attending to instead. To find out, Klin, Jones and colleagues tracked the eye movements of two-year-olds with and without the disorder while they looked at cartoon animations on split-screen displays.

The researchers borrowed a technique from the video game industry, called motion capture. They then reduced the movements to only points of light at each joint in the body, like animated constellations. These cartoons played normally – upright and forward – on one half of the screen, but upside-down and in reverse on the other half. The inverted presentation engages different brain circuits and is known to disrupt perception of biological motion in young children. The normal soundtrack of the actor's voice, recorded when the animations were made, accompanied the presentations.

Eye-tracking data initially showed that 21 toddlers with ASD had no preference for the upright animations, looking back and forth between the two. By contrast, 39 typically-developing toddlers and 16 developmentally delayed but non-autistic toddlers clearly preferred the upright animations.

However, responses to one animation didn't fit the pattern. The toddlers with ASD changed their behavior and shifted their attention to the upright figure as it played a game of pat-a-cake, where the figure claps his hands repeatedly. In this animation (see movie below), unlike the others, the movements of the points of light actually cause the clapping sound. This physical synchrony—dots colliding to produce a clapping sound—only existed on the upright side of the screen, because the inverted figure played in reverse and its motions weren't in sync with the soundtrack. The children with ASD chose the upright figure 66 percent of the time, a strong preference.

This clue led the researchers to suspect that what initially appeared to be random viewing by the ASD toddlers might actually reflect preference for audiovisual synchronies that were less obvious than the clapping. So they re-analyzed the data, factoring in more subtle synchronous changes in motion and sound.

"Audio-visual synchronies accounted for about 90 percent of the preferred viewing patterns of toddlers with ASD and none of unaffected toddlers," said Jones. "Typically-developing children focused instead on the most socially relevant information."

A follow-up experiment using new animations optimized for audiovisual synchrony confirmed these results.

Klin, Jones, and colleagues also recently reported that children with autism look more at peoples' mouths than eyes as early as age 2. Since the mouth is the facial feature with most audiovisual synchrony – lip motion with speech sound – the researchers propose that their new findings offer a likely explanation for this phenomenon.

"Our results suggest that, in autism, genetic predispositions are exacerbated by atypical experience from a very early age, altering brain development," said Klin. "Attention to biological motion is a fundamental mechanism of social engagement, and in the future, we need to understand how this process is derailed in autism, starting still earlier, in the first weeks and months of life."

Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov
http://www.nih.gov

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>