Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More attractive, fresher, healthier: thanks to nano-packaging and nano-additives?

23.01.2009
Nanotechnology is moving into the food industry, in the form of additives or in packaging materials.

A study by the Centre for Technology Assessment TA-SWISS provides an overview of nanomaterials already used in the food sector. The study assesses these products in respect of environmental issues and sustainability, showing the direction that future developments might take and where there is a need for caution.

More than in any other sector, the question that arises with food is: what is nano, and what effect is it likely to have? Because what we eat goes into our bodies, at least there should not be anything in it that is potentially harmful to the organism. As the TA-SWISS study shows, there are only a few food products with nano-scale additives that are available in Swiss shops.

These are well tried and tested, and are regarded as harmless. Nevertheless, products that contain nano-scale additives which are banned in Switzerland and may pose a risk to health can also be bought over the Internet from other countries. Today, nanotechnology in the food industry is virtually insignificant in terms of environ-menttally sound and health-promoting nutrition, and even in the future it is only likely to play a relatively subordinate role in making nutrition more sustainable. Nanotechnology is already commonly used in food packaging, an area that is regarded as having considerable potential for innovation.

Such packaging brings the hope of improved keeping quality for foods, and less waste. The study also shows that the legal provisions for food products and packaging materials are not sufficiently geared to the challenges of nanotechnology. Action is also needed from manufacturers, processors and dealers: transparency and an active information policy are called for.

Extend shelf life and improve the eco balance with food packaging

Packaging films and PET bottles with synthetic nanocomponents are available on the Swiss market. Nanomaterials improve the barrier properties against gases, water vapour and flavourings, and also improve the mechanical and thermal properties or UV protection. Nanotechnologically optimised PET bottles have a more beneficial CO2 balance: according to a life-cycle analysis, published for the first time in the TA-SWISS study, savings of some 10,000 tonnes of climate-damaging emissions could be achieved in Switzerland alone; in manufacture, transport and recycling, nano-PET bottles generate about one-third fewer greenhouse gases than aluminium and about 60 per cent fewer than disposable glass bottles. Nano-PET bottles are therefore just as good as reusable glass bottles.

Do nanoparticles from packaging get into food?

Whether nanoparticles can pass from packaging into food is primarily dependent on how the nano-layer was applied. Transfer cannot be ruled out where the nanomaterials come into direct contact with the food. In this case, therefore, the missing proof that the product is harmless still has to be produced. This also applies to so-called "antimicrobial-action food packaging": a coating layer with germicidal nano-silver particles causes food to perish less quickly. These materials are not yet available in Switzerland, but could be bought on the Internet from other countries.

Nano-scale additives in food

Today, there are only a few food products in Switzerland that are fortified with nano-scale additives. These include an anti-caking agent, which stops condiments going lumpy. It consists of silicic acid (silicon dioxide or E 551), which when comminuted produces a powdery material containing nano-scale particles. Synthetic nanocomponents are also used for so-called encapsulation, for example to enclose carotenoids or vitamins to make them water soluble, keep longer or better absorbed by the body. Such additives have been tested for use in foods, and are regarded as harmless.

Who is interested in nanofood?

The TA-SWISS study concludes that people with certain "nutritional styles" could actually be open minded about food containing additives produced by nanotechnology. Even more so if we assume that nanofoods might be easier to manage and/or could have added health benefits. In developing countries, such additives could help to combat malnutrition; for example, by fortifying basic foods with iron, zinc, vitamin A or folic acid. It must, however, be taken into account that such products must also be affordable and accessible to the demographic groups that need them.

Gaps in legal regulation and labelling requirement

Swiss food legislation is based on the so-called "positive principle". This means that only additives which appear on the positive list and are allocated an E-number can be used. They have to meet a series of requirements, in particular evidence that a food cannot be manufactured without the additive concerned, and that the quantity used cannot be harmful to consumers' health. Nanoparticles could also fall into this category, and must accordingly be tested using the above criteria. The general rule is: If an additive that is currently on the positive list is used, it does not have to be retested - not even if it is now added in a nano-scale form. Because it is now known that the same material as a nanoparticle often behaves differently than when it is used on a macro-scale, this provision does not go far enough in respect of nano-scale additives.

According to the food labelling ordinance (LKV), all ingredients of any food product must be listed. There is no obligation to refer specifically to particle size.

Nevertheless, citizens want nanoparticles to be labelled, especially in the food industry; that was shown in a participative procedure conducted by TA-SWISS in 2006.

Recommendations of the TA-SWISS study

Regulation: The existing legislation on foods and chemicals should be adapted to meet the demands of nanotechnology.

Transparency: Manufacturers should establish an active information policy to help ease the sense of mistrust among the population. Manufacturers, processors and dealers of foods and food packaging with nano-components could, for instance, increasingly follow industry-specific Codes of Conduct. Consumers want to be able to find out for themselves what a product contains, and to use this as a basis for their purchase decision. It should at least be obligatory for manufacturers to inform the food authorities if they put products into circulation that contain nanomaterials.

Declaration: In view of the international flows of goods, a global, or at least a Europe-wide regulation would be preferable to Switzerland acting on its own. Specific labelling would respond to the need for transparency, and would simplify the traceability of the relevant foods and governmental monitoring of foods; non-specific labelling, however, such as "contains nanoparticles", seems less helpful for these purposes.

The existing systems for traceability in food production should be checked for their applicability to nanomaterials. Only then is it possible to take products off the market quickly should subsequent findings indicate potential dangers.

The precautionary principle should be expressly embodied into food legislation, as it is in the Swiss Federal law on the protection of the environment. Only on this basis can the Swiss food authorities initiate risk management measures.

Human and eco-toxicology risk research must be promoted. The effects of nanoparticles must be tested over the whole life cycle of a product, from manufacture to disposal.

For further information:
Sekretariat TA-SWISS, +41 31 310 99 60, info@ta-swiss.ch
Susanne Brenner, +41 31 310 99 65, susanne.brenner@ta-swiss.ch

Dr. Béatrice Miller | idw
Further information:
http://www.ta-swiss.ch
http://www.ta-swiss.ch/e/them_nano_nafo.html

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>