Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronaut muscles waste in space

18.08.2010
Astronaut muscles waste away on long space flights reducing their capacity for physical work by more than 40%, according to research published online in the Journal of Physiology.

This is the equivalent of a 30- to 50-year-old crew member's muscles deteriorating to that of an 80-year-old. The destructive effects of extended weightlessness to skeletal muscle – despite in-flight exercise – pose a significant safety risk for future manned missions to Mars and elsewhere in the Universe.

An American study, led by Robert Fitts of Marquette University (Milwaukee, Wisconsin), was recently published online by The Journal of Physiology and will be in the September printed issue. It comes at a time of renewed interest in Mars and increased evidence of early life on the planet. NASA currently estimates it would take a crew 10 months to reach Mars, with a 1 year stay, or a total mission of approximately 3 years.

Fitts, Chair and Professor of Biological Sciences at Marquette, believes if astronauts were to travel to Mars today their ability to perform work would be compromised and, with the most affected muscles such as the calf, the decline could approach 50%. Crew members would fatigue more rapidly and have difficulty performing even routine work in a space suit. Even more dangerous would be their return to Earth, where they'd be physically incapable of evacuating quickly in case of an emergency landing.

The study – the first cellular analysis of the effects of long duration space flight on human muscle – took calf biopsies of nine astronauts and cosmonauts before and immediately following 180 days on the International Space Station (ISS). The findings show substantial loss of fibre mass, force and power in this muscle group. Unfortunately starting the journey in better physical condition did not help. Ironically, one of the study's findings was that crew members who began with the biggest muscles also showed the greatest decline.

The results highlight the need to design and test more effective exercise countermeasures on the ISS before embarking on distant space journeys. New exercise programmes will need to employ high resistance and a wide variety of motion to mimic the range occurring in Earth's atmosphere.

Fitts doesn't feel scientists should give up on extended space travel. 'Manned missions to Mars represent the next frontier, as the Western Hemisphere of our planet was 800 years ago,' says Fitts. 'Without exploration we will stagnate and fail to advance our understanding of the Universe.'

In the shorter term, Fitts believes efforts should be on fully utilizing the International Space Station so that better methods to protect muscle and bone can be developed. 'NASA and ESA need to develop a vehicle to replace the shuttle so that at least six crew members can stay on the ISS for 6-9 months,' recommends Fitts. 'Ideally, the vehicle should be able to dock at the ISS for the duration of the mission so that, in an emergency, all crew could evacuate the station.'

Mary Arbuthnot | EurekAlert!
Further information:
http://www.physoc.org
http://www.wiley.com

Further reports about: Astronaut ISS International Space Station Mars NASA Physiology Space Universe

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>