Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach challenges old ideas about plant species and biomass

23.09.2011
For decades, scientists have believed that a relationship exists between how much biomass plant species produce and how many species can coexist.

This idea comes from a 1970s study that showed as plant biomass produced - called plant productivity - in a system increased, so did the number of plant species - referred to as plant richness - to a point. After that point, the number of plant species is thought to decline.

When plotted on a graph, the resulting line forms a hump shape, with maximum species richness occurring at the point of intermediate productivity.

Now it's time to get over the hump, according to new research in the current issue of the journal Science.

Stanley Harpole, assistant professor in the Department of Ecology, Evolution, and Organismal Biology at Iowa State University, was part of the team researching productivity and richness, and he says the research doesn't support that relationship.

"This hump pattern that everyone thought was true . . . it just isn't there," said Harpole. "This hump was the hypothesis for a long time, but it just isn't supportable."

Harpole says that the amount of biomass is one of the more important components of an ecosystem, so there will be worldwide interest in this research.

"Ecologists have long been interested in this relationship between how many plants there are and how much they produce," said Harpole. "For years they [scientists] have been plotting correlations looking at the relationship of biomass to species richness."

There was no 'hump' shape, according to Harpole. In fact, after plotting the data from all the sites, only one of the 65 sites showed a hump-shaped pattern.

"And that is supposed to be the 'true' pattern?" said Harpole.

Harpole believes the original work that led to the predictions for a hump shape was good research, and it showed a correlation between richness and productivity. But it didn't show cause-and-effect relationships.

"Hundreds of papers have talked about this and it has become fixed in researchers' heads that this is a true pattern," said Harpole.

The lead author of the paper is Peter Adler from Utah State University who is part of a Nutrient Network (NutNet) team that he, Harpole and others established.

The study is the first major paper produced by NutNet, a worldwide, ecological research group of more than 70 scientists on five continents that works cooperatively on studies of this kind.

Previous studies with global implications were often limited because disparate groups used different methods to collect data, leading to sometimes different conclusions.

NutNet's standardized methods eliminate those inconsistencies.

"We use the same experiment, the same design, the same measurements were taken, the species were counted in the same way, and the biomass was clipped in the same say," said Harpole. "It is important that you do everything in the same way."

When the results from NutNet's 65 research sites came in, the results were clear.

Harpole said the NutNet group wasn't trying to prove anyone wrong, but just hoped for clearer understanding.

"This is exciting science to me," he said. "We are just trying to figure out what is going on. How the world works. That is what we really wanted to know."

Other Iowa State University contributors to the research include Lori Biederman, associate scientist; Paul Frater, master's student; Wei Li, post-doctoral researcher; Brent Mortensen, doctoral student; and Lauren Sullivan, doctoral student. Many members of this group are currently leading their own NutNet projects.

Stanley Harpole | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>