Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants More Rational than Humans

28.07.2009
In a study released online on July 22 in the journal Proceedings of the Royal Society: Biological Sciences, researchers at Arizona State University and Princeton University show that ants can accomplish a task more rationally than our – multimodal, egg-headed, tool-using, bipedal, opposing-thumbed – selves.

This is not the case of humans being “stupider” than ants. Humans and animals simply often make irrational choices when faced with very challenging decisions, note the study’s architects Stephen Pratt and Susan Edwards.

“This paradoxical outcome is based on apparent constraint: most individual ants know of only a single option, and the colony’s collective choice self-organizes from interactions among many poorly-informed ants,” says Pratt, an assistant professor in the School of Life Sciences in ASU’s College of Liberal Arts and Sciences.

The authors’ insights arose from an examination of the process of nest selection in the ant, Temnothorax curvispinosus. These ant colonies live in small cavities, as small as an acorn, and are skillful in finding new places to roost. The challenge before the colony was to “choose” a nest, when offered two options with very similar advantages.

What the authors found is that in collective decision-making in ants, the lack of individual options translated into more accurate outcomes by minimizing the chances for individuals to make mistakes. A “wisdom of crowds” approach emerges, Pratt believes.

“Rationality in this case should be thought of as meaning that a decision-maker, who is trying to maximize something, should simply be consistent in its preferences.” Pratt says. “For animals trying to maximize their fitness, for example, they should always rank options, whether these are food sources, mates, or nest sites, according to their fitness contribution.”

“Which means that it would be irrational to prefer choice ‘A’ to ‘B’ on Tuesday and then to prefer ‘B’ to ‘A’ on Wednesday, if the fitness returns of the two options have not changed.”

“Typically we think having many individual options, strategies and approaches are beneficial,” Pratt adds, “but irrational errors are more likely to arise when individuals make direct comparisons among options.”

Studies of how or why irrationality arises can give insight into cognitive mechanisms and constraints, as well as how collective decision making occurs. Insights such as Pratt’s and Edward’s could also translate into new approaches in the development of artificial intelligence.

“A key idea in collective robotics is that the individual robots can be relatively simple and unsophisticated, but you can still get a complex, intelligent result out of the whole group,” says Pratt. “The ability to function without complex central control is really desirable in an artificial system and the idea that limitations at the individual level can actually help at the group level is potentially very useful.” Pratt is a member of Heterogeneous Unmanned Networked Team (HUNT), a project funded by the Office of Naval Research (ONR) to enable to development of bio-inspired solutions to engineering problems.

What do these findings potentially say about understanding human social systems?

“It is hard to say. But it’s at least worth entertaining the possibility that some strategic limitation on individual knowledge could improve the performance of a large and complex group that is trying to accomplish something collectively,” Pratt says.

This study was supported in part by a grant from the Pew Charitable Trusts.

Source
Stephen Pratt
Stephen.Pratt@asu.edu
480-686-4567 (cell)
(480) 727-9425 (work)

Margaret Coulombe | Newswise Science News
Further information:
http://www.asu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>