Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants More Rational than Humans

28.07.2009
In a study released online on July 22 in the journal Proceedings of the Royal Society: Biological Sciences, researchers at Arizona State University and Princeton University show that ants can accomplish a task more rationally than our – multimodal, egg-headed, tool-using, bipedal, opposing-thumbed – selves.

This is not the case of humans being “stupider” than ants. Humans and animals simply often make irrational choices when faced with very challenging decisions, note the study’s architects Stephen Pratt and Susan Edwards.

“This paradoxical outcome is based on apparent constraint: most individual ants know of only a single option, and the colony’s collective choice self-organizes from interactions among many poorly-informed ants,” says Pratt, an assistant professor in the School of Life Sciences in ASU’s College of Liberal Arts and Sciences.

The authors’ insights arose from an examination of the process of nest selection in the ant, Temnothorax curvispinosus. These ant colonies live in small cavities, as small as an acorn, and are skillful in finding new places to roost. The challenge before the colony was to “choose” a nest, when offered two options with very similar advantages.

What the authors found is that in collective decision-making in ants, the lack of individual options translated into more accurate outcomes by minimizing the chances for individuals to make mistakes. A “wisdom of crowds” approach emerges, Pratt believes.

“Rationality in this case should be thought of as meaning that a decision-maker, who is trying to maximize something, should simply be consistent in its preferences.” Pratt says. “For animals trying to maximize their fitness, for example, they should always rank options, whether these are food sources, mates, or nest sites, according to their fitness contribution.”

“Which means that it would be irrational to prefer choice ‘A’ to ‘B’ on Tuesday and then to prefer ‘B’ to ‘A’ on Wednesday, if the fitness returns of the two options have not changed.”

“Typically we think having many individual options, strategies and approaches are beneficial,” Pratt adds, “but irrational errors are more likely to arise when individuals make direct comparisons among options.”

Studies of how or why irrationality arises can give insight into cognitive mechanisms and constraints, as well as how collective decision making occurs. Insights such as Pratt’s and Edward’s could also translate into new approaches in the development of artificial intelligence.

“A key idea in collective robotics is that the individual robots can be relatively simple and unsophisticated, but you can still get a complex, intelligent result out of the whole group,” says Pratt. “The ability to function without complex central control is really desirable in an artificial system and the idea that limitations at the individual level can actually help at the group level is potentially very useful.” Pratt is a member of Heterogeneous Unmanned Networked Team (HUNT), a project funded by the Office of Naval Research (ONR) to enable to development of bio-inspired solutions to engineering problems.

What do these findings potentially say about understanding human social systems?

“It is hard to say. But it’s at least worth entertaining the possibility that some strategic limitation on individual knowledge could improve the performance of a large and complex group that is trying to accomplish something collectively,” Pratt says.

This study was supported in part by a grant from the Pew Charitable Trusts.

Source
Stephen Pratt
Stephen.Pratt@asu.edu
480-686-4567 (cell)
(480) 727-9425 (work)

Margaret Coulombe | Newswise Science News
Further information:
http://www.asu.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>