Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants More Rational than Humans

28.07.2009
In a study released online on July 22 in the journal Proceedings of the Royal Society: Biological Sciences, researchers at Arizona State University and Princeton University show that ants can accomplish a task more rationally than our – multimodal, egg-headed, tool-using, bipedal, opposing-thumbed – selves.

This is not the case of humans being “stupider” than ants. Humans and animals simply often make irrational choices when faced with very challenging decisions, note the study’s architects Stephen Pratt and Susan Edwards.

“This paradoxical outcome is based on apparent constraint: most individual ants know of only a single option, and the colony’s collective choice self-organizes from interactions among many poorly-informed ants,” says Pratt, an assistant professor in the School of Life Sciences in ASU’s College of Liberal Arts and Sciences.

The authors’ insights arose from an examination of the process of nest selection in the ant, Temnothorax curvispinosus. These ant colonies live in small cavities, as small as an acorn, and are skillful in finding new places to roost. The challenge before the colony was to “choose” a nest, when offered two options with very similar advantages.

What the authors found is that in collective decision-making in ants, the lack of individual options translated into more accurate outcomes by minimizing the chances for individuals to make mistakes. A “wisdom of crowds” approach emerges, Pratt believes.

“Rationality in this case should be thought of as meaning that a decision-maker, who is trying to maximize something, should simply be consistent in its preferences.” Pratt says. “For animals trying to maximize their fitness, for example, they should always rank options, whether these are food sources, mates, or nest sites, according to their fitness contribution.”

“Which means that it would be irrational to prefer choice ‘A’ to ‘B’ on Tuesday and then to prefer ‘B’ to ‘A’ on Wednesday, if the fitness returns of the two options have not changed.”

“Typically we think having many individual options, strategies and approaches are beneficial,” Pratt adds, “but irrational errors are more likely to arise when individuals make direct comparisons among options.”

Studies of how or why irrationality arises can give insight into cognitive mechanisms and constraints, as well as how collective decision making occurs. Insights such as Pratt’s and Edward’s could also translate into new approaches in the development of artificial intelligence.

“A key idea in collective robotics is that the individual robots can be relatively simple and unsophisticated, but you can still get a complex, intelligent result out of the whole group,” says Pratt. “The ability to function without complex central control is really desirable in an artificial system and the idea that limitations at the individual level can actually help at the group level is potentially very useful.” Pratt is a member of Heterogeneous Unmanned Networked Team (HUNT), a project funded by the Office of Naval Research (ONR) to enable to development of bio-inspired solutions to engineering problems.

What do these findings potentially say about understanding human social systems?

“It is hard to say. But it’s at least worth entertaining the possibility that some strategic limitation on individual knowledge could improve the performance of a large and complex group that is trying to accomplish something collectively,” Pratt says.

This study was supported in part by a grant from the Pew Charitable Trusts.

Source
Stephen Pratt
Stephen.Pratt@asu.edu
480-686-4567 (cell)
(480) 727-9425 (work)

Margaret Coulombe | Newswise Science News
Further information:
http://www.asu.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>