Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidants -- too much of a good thing?

22.07.2013
A compound in red grapes, including red wine, counteracts exercise benefits in older men

In older men, a natural antioxidant compound found in red grapes and other plants -- called resveratrol -- blocks many of the cardiovascular benefits of exercise, according to research published today [22 July 2013] in The Journal of Physiology.

Resveratrol has received widespread attention as a possible anti-aging compound and is now widely available as a dietary supplement; much has been made of its role in explaining the cardiovascular health benefits of red wine, and other foods. But now, new research at The University of Copenhagen surprisingly suggests that eating a diet rich in antioxidants may actually counteract many of the health benefits of exercise, including reduced blood pressure and cholesterol.

In contrast to earlier studies in animals in which resveratrol improved the cardiovascular benefits of exercise, this study in humans has provided surprising and strong evidence that in older men, resveratrol has the opposite effect.

What is emerging is a new view that antioxidants are not a fix for everything, and that some degree of oxidant stress may be necessary for the body to work correctly. This pivotal study suggests that reactive oxygen species, generally thought of as causing aging and disease, may be a necessary signal that causes healthy adaptations in response to stresses like exercise. So too much of a good thing (like antioxidants in the diet) may actually be detrimental to our health.

Lasse Gliemann, a PhD student who worked on the study at The University of Copenhagen, explains how they conducted the research, and the results they found: "We studied 27 healthy, physically inactive men around 65 years old for 8 weeks. During the 8 weeks all of the men performed high-intensity exercise training and half of the group received 250 mg of resveratrol daily, whereas the other group received a placebo pill (a pill containing no active ingredient). The study design was double-blinded, thus neither the subjects nor the investigators knew which participant that received either resveratrol or placebo.

"We found that exercise training was highly effective in improving cardiovascular health parameters, but resveratrol supplementation attenuated the positive effects of training on several parameters including blood pressure, plasma lipid concentrations and maximal oxygen uptake."

Ylva Hellsten, the leader of the project, says:"We were surprised to find that resveratrol supplementation in aged men blunts the positive effects of exercise training on cardiovascular health parameters, in part because our results contradict findings in animal studies.

"It should be noted that the quantities of resveratrol given in our research study are much higher than what could be obtained by intake of natural foods."

This research adds to the growing body of evidence questioning the positive effects of antioxidant supplementation in humans.

Michael Joyner, from The Mayo Clinic USA, says how the study has wider implications for research: "In addition to the surprising findings on exercise and resveratrol, this study shows the continuing need for mechanistic studies in humans. Too often human studies focus on large scale outcomes and clinical trials and not on understanding the basic biology of how we adapt."

Lucy Holmes | EurekAlert!
Further information:
http://www.wiley.com
http://www.physoc.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>