Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-VEGF drugs for retinal diseases could have serious side effects, scientists caution

05.11.2008
Scientists at Schepens Eye Research Institute have found that reducing the levels of vascular endothelial growth factor (VEGF), which is best known as a stimulator of new blood vessel growth, in adult mice causes the death of photoreceptors and Muller glia - cells of the retina that are essential to visual function.

This finding, published in the November 3, 2008 PLoS ONE, holds implications for the chronic use of promising new anti-VEGF drugs such as Lucentis, which eliminate abnormal and damaging blood vessel growth and leakage in the retina by neutralizing VEGF.

"The take home message of this study is that physicians should be vigilant in monitoring patients undergoing anti-VEGF treatments for any possible signs of these side effects," says Principal Investigator Patricia D'Amore, Senior Scientist at Schepens Eye Research Institute. "Drugs such as Lucentis are very good at reducing the edema (fluids) and eliminating the abnormal blood vessels that characterize wet macular degeneration, but our results suggest that there could be unanticipated side effects."

Scientists have long known that VEGF is essential for normal development of the vascular system and for wound healing. It triggers the formation of new blood vessels that nourish the growing body and heal organs and tissues. VEGF also stimulates--in an apparent misguided attempt to heal perceived damage in the retina--the growth of abnormal blood vessels that leak and damage delicate retinal tissue.

However, a growing body of evidence also indicates that beyond its impact on blood vessel growth, VEGF may play other vital roles in the adult body and eye, so that eliminating the growth factor might lead to unexpected consequences.

Given the popularity and promise of the new anti-VEGF drugs for the treatment of macular degeneration, D'Amore and her team believed that investigating the broader role of this growth factor in the normal adult retina was critical. She and her laboratory mimicked the action of the anti-VEGF drugs by introducing into adult mice a soluble VEGF receptor, known as sFlt1, which binds and neutralizes the VEGF-- in much the same way that Lucentis does in the eye.

After two weeks, the team found no effect on blood vessels of the inner retina, but did find a significant increase in the number of dying cells of the inner and outer nuclear layers which include amacrine cells that participate in transmitting the visual signal; Muller cells that also participate in the visual signal and support the photoreceptors; and, photoreceptors, which are responsible for color and night vision. The team then used electroretinograms to measure visual function and found a significant loss in visual function. Consistent with these observations, they discovered that both photoreceptors and Muller cells express VEGFR2, the major VEGF signaling receptor and they found that neighboring Muller cells express VEGF.

Parallel studies in tissue culture demonstrated that suppressing VEGF in Muller cells led to Muller cell death, indicating an autocrine role for VEGF in Muller cells (i.e. Muller cells both make VEGF and use it for survival). Further, they used cultures of freshly isolated photoreceptors to show that VEGF can act as a protectant for these cells.

"Insight into the complex role of VEGF in the eye and in other parts of the body indicates that increased care should be taken in the long-term use of these drugs and that this new information should be considered in the design of future clinical studies to ensure that these possible side effects are taken into account," says D'Amore.

"Mice eyes differ from human eyes in many ways, so we cannot directly extrapolate these results to humans, but this study is an important heads-up that clinical application of anti-VEGF therapy in the eye needs to proceed with caution," she adds.

From a clinical perspective, Dr. Delia Sang of Ophthalmic Consultants of Boston points out that the use of anti-VEGF therapy in the treatment of patients with wet macular degeneration has revolutionized outcomes in this disease. However, in light of the work of Dr. D'Amore and others, in elucidating possible systemic and ocular side effects of these drugs, "caution must be exercised in identifying patients at increased risk of problems with long-=term VEGF blockade, and potential side effects must be detected early in the assessment of patients who will require repeated dosages of anti-VEGF agents."

The study is also relevant to the drug Avastin, which was initially approved for intravenous use as an anti-angiogenic agent in the treatment of cancer, but is also widely used intravitreally for the treatment of wet AMD because of its similar mode of action and much lower cost.

The next steps in D'Amore's research will include investigating the specific functions of VEGF in the eye.

Authors of the study include: Magali Saint-Geniez (1,2), Arindel S. R. Maharaj (1), Tony E. Walshe (1,2), Budd A. Tucker (1,2), Eiichi Sekiyama (1,2), Tomoki Kurihara (1), Diane C. Darland (4), Michael J. Young (1,2), Patricia A. D'Amore (1,2,3)

1 Schepens Eye Research Institute
2 Department of Ophthalmology, Harvard Medical School
3 Department of Pathology, Harvard Medical School
4 University of North Dakota, Grand Forks, North Dakota

Patti Jacobs | EurekAlert!
Further information:
http://www.schepens.harvard.edu/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>