Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-VEGF drugs for retinal diseases could have serious side effects, scientists caution

05.11.2008
Scientists at Schepens Eye Research Institute have found that reducing the levels of vascular endothelial growth factor (VEGF), which is best known as a stimulator of new blood vessel growth, in adult mice causes the death of photoreceptors and Muller glia - cells of the retina that are essential to visual function.

This finding, published in the November 3, 2008 PLoS ONE, holds implications for the chronic use of promising new anti-VEGF drugs such as Lucentis, which eliminate abnormal and damaging blood vessel growth and leakage in the retina by neutralizing VEGF.

"The take home message of this study is that physicians should be vigilant in monitoring patients undergoing anti-VEGF treatments for any possible signs of these side effects," says Principal Investigator Patricia D'Amore, Senior Scientist at Schepens Eye Research Institute. "Drugs such as Lucentis are very good at reducing the edema (fluids) and eliminating the abnormal blood vessels that characterize wet macular degeneration, but our results suggest that there could be unanticipated side effects."

Scientists have long known that VEGF is essential for normal development of the vascular system and for wound healing. It triggers the formation of new blood vessels that nourish the growing body and heal organs and tissues. VEGF also stimulates--in an apparent misguided attempt to heal perceived damage in the retina--the growth of abnormal blood vessels that leak and damage delicate retinal tissue.

However, a growing body of evidence also indicates that beyond its impact on blood vessel growth, VEGF may play other vital roles in the adult body and eye, so that eliminating the growth factor might lead to unexpected consequences.

Given the popularity and promise of the new anti-VEGF drugs for the treatment of macular degeneration, D'Amore and her team believed that investigating the broader role of this growth factor in the normal adult retina was critical. She and her laboratory mimicked the action of the anti-VEGF drugs by introducing into adult mice a soluble VEGF receptor, known as sFlt1, which binds and neutralizes the VEGF-- in much the same way that Lucentis does in the eye.

After two weeks, the team found no effect on blood vessels of the inner retina, but did find a significant increase in the number of dying cells of the inner and outer nuclear layers which include amacrine cells that participate in transmitting the visual signal; Muller cells that also participate in the visual signal and support the photoreceptors; and, photoreceptors, which are responsible for color and night vision. The team then used electroretinograms to measure visual function and found a significant loss in visual function. Consistent with these observations, they discovered that both photoreceptors and Muller cells express VEGFR2, the major VEGF signaling receptor and they found that neighboring Muller cells express VEGF.

Parallel studies in tissue culture demonstrated that suppressing VEGF in Muller cells led to Muller cell death, indicating an autocrine role for VEGF in Muller cells (i.e. Muller cells both make VEGF and use it for survival). Further, they used cultures of freshly isolated photoreceptors to show that VEGF can act as a protectant for these cells.

"Insight into the complex role of VEGF in the eye and in other parts of the body indicates that increased care should be taken in the long-term use of these drugs and that this new information should be considered in the design of future clinical studies to ensure that these possible side effects are taken into account," says D'Amore.

"Mice eyes differ from human eyes in many ways, so we cannot directly extrapolate these results to humans, but this study is an important heads-up that clinical application of anti-VEGF therapy in the eye needs to proceed with caution," she adds.

From a clinical perspective, Dr. Delia Sang of Ophthalmic Consultants of Boston points out that the use of anti-VEGF therapy in the treatment of patients with wet macular degeneration has revolutionized outcomes in this disease. However, in light of the work of Dr. D'Amore and others, in elucidating possible systemic and ocular side effects of these drugs, "caution must be exercised in identifying patients at increased risk of problems with long-=term VEGF blockade, and potential side effects must be detected early in the assessment of patients who will require repeated dosages of anti-VEGF agents."

The study is also relevant to the drug Avastin, which was initially approved for intravenous use as an anti-angiogenic agent in the treatment of cancer, but is also widely used intravitreally for the treatment of wet AMD because of its similar mode of action and much lower cost.

The next steps in D'Amore's research will include investigating the specific functions of VEGF in the eye.

Authors of the study include: Magali Saint-Geniez (1,2), Arindel S. R. Maharaj (1), Tony E. Walshe (1,2), Budd A. Tucker (1,2), Eiichi Sekiyama (1,2), Tomoki Kurihara (1), Diane C. Darland (4), Michael J. Young (1,2), Patricia A. D'Amore (1,2,3)

1 Schepens Eye Research Institute
2 Department of Ophthalmology, Harvard Medical School
3 Department of Pathology, Harvard Medical School
4 University of North Dakota, Grand Forks, North Dakota

Patti Jacobs | EurekAlert!
Further information:
http://www.schepens.harvard.edu/

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>