Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-VEGF drugs for retinal diseases could have serious side effects, scientists caution

05.11.2008
Scientists at Schepens Eye Research Institute have found that reducing the levels of vascular endothelial growth factor (VEGF), which is best known as a stimulator of new blood vessel growth, in adult mice causes the death of photoreceptors and Muller glia - cells of the retina that are essential to visual function.

This finding, published in the November 3, 2008 PLoS ONE, holds implications for the chronic use of promising new anti-VEGF drugs such as Lucentis, which eliminate abnormal and damaging blood vessel growth and leakage in the retina by neutralizing VEGF.

"The take home message of this study is that physicians should be vigilant in monitoring patients undergoing anti-VEGF treatments for any possible signs of these side effects," says Principal Investigator Patricia D'Amore, Senior Scientist at Schepens Eye Research Institute. "Drugs such as Lucentis are very good at reducing the edema (fluids) and eliminating the abnormal blood vessels that characterize wet macular degeneration, but our results suggest that there could be unanticipated side effects."

Scientists have long known that VEGF is essential for normal development of the vascular system and for wound healing. It triggers the formation of new blood vessels that nourish the growing body and heal organs and tissues. VEGF also stimulates--in an apparent misguided attempt to heal perceived damage in the retina--the growth of abnormal blood vessels that leak and damage delicate retinal tissue.

However, a growing body of evidence also indicates that beyond its impact on blood vessel growth, VEGF may play other vital roles in the adult body and eye, so that eliminating the growth factor might lead to unexpected consequences.

Given the popularity and promise of the new anti-VEGF drugs for the treatment of macular degeneration, D'Amore and her team believed that investigating the broader role of this growth factor in the normal adult retina was critical. She and her laboratory mimicked the action of the anti-VEGF drugs by introducing into adult mice a soluble VEGF receptor, known as sFlt1, which binds and neutralizes the VEGF-- in much the same way that Lucentis does in the eye.

After two weeks, the team found no effect on blood vessels of the inner retina, but did find a significant increase in the number of dying cells of the inner and outer nuclear layers which include amacrine cells that participate in transmitting the visual signal; Muller cells that also participate in the visual signal and support the photoreceptors; and, photoreceptors, which are responsible for color and night vision. The team then used electroretinograms to measure visual function and found a significant loss in visual function. Consistent with these observations, they discovered that both photoreceptors and Muller cells express VEGFR2, the major VEGF signaling receptor and they found that neighboring Muller cells express VEGF.

Parallel studies in tissue culture demonstrated that suppressing VEGF in Muller cells led to Muller cell death, indicating an autocrine role for VEGF in Muller cells (i.e. Muller cells both make VEGF and use it for survival). Further, they used cultures of freshly isolated photoreceptors to show that VEGF can act as a protectant for these cells.

"Insight into the complex role of VEGF in the eye and in other parts of the body indicates that increased care should be taken in the long-term use of these drugs and that this new information should be considered in the design of future clinical studies to ensure that these possible side effects are taken into account," says D'Amore.

"Mice eyes differ from human eyes in many ways, so we cannot directly extrapolate these results to humans, but this study is an important heads-up that clinical application of anti-VEGF therapy in the eye needs to proceed with caution," she adds.

From a clinical perspective, Dr. Delia Sang of Ophthalmic Consultants of Boston points out that the use of anti-VEGF therapy in the treatment of patients with wet macular degeneration has revolutionized outcomes in this disease. However, in light of the work of Dr. D'Amore and others, in elucidating possible systemic and ocular side effects of these drugs, "caution must be exercised in identifying patients at increased risk of problems with long-=term VEGF blockade, and potential side effects must be detected early in the assessment of patients who will require repeated dosages of anti-VEGF agents."

The study is also relevant to the drug Avastin, which was initially approved for intravenous use as an anti-angiogenic agent in the treatment of cancer, but is also widely used intravitreally for the treatment of wet AMD because of its similar mode of action and much lower cost.

The next steps in D'Amore's research will include investigating the specific functions of VEGF in the eye.

Authors of the study include: Magali Saint-Geniez (1,2), Arindel S. R. Maharaj (1), Tony E. Walshe (1,2), Budd A. Tucker (1,2), Eiichi Sekiyama (1,2), Tomoki Kurihara (1), Diane C. Darland (4), Michael J. Young (1,2), Patricia A. D'Amore (1,2,3)

1 Schepens Eye Research Institute
2 Department of Ophthalmology, Harvard Medical School
3 Department of Pathology, Harvard Medical School
4 University of North Dakota, Grand Forks, North Dakota

Patti Jacobs | EurekAlert!
Further information:
http://www.schepens.harvard.edu/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>