Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-smoking ads with strong arguments, not flashy editing, trigger part of brain involving behavior change

24.04.2013
Smokers who viewed 'strong' ads had less nicotine in urine a month later

Researchers from the Perelman School of Medicine at the University of Pennsylvania have shown that an area of the brain that initiates behavioral changes had greater activation in smokers who watched anti-smoking ads with strong arguments versus those with weaker ones, and irrespective of flashy elements, like bright and rapidly changing scenes, loud sounds and unexpected scenario twists. Those smokers also had significantly less nicotine metabolites in their urine when tested a month after viewing those ads, the team reports in a new study published online April 23 in the Journal of Neuroscience.

This is the first time research has shown an association between cognition and brain activity in response to content and format in televised ads and behavior.

In a study of 71 non-treatment-seeking smokers recruited from the Philadelphia area, the team, led by Daniel D. Langleben, M.D., a psychiatrist in the Center for Studies of Addiction at Penn Medicine, identified key brain regions engaged in the processing of persuasive communications using fMRI, or functional magnetic resonance imaging. They found that a part of the brain involved in future behavioral changes—known as the dorsomedial prefrontal cortex (dMPFC)—had greater activation when smokers watched an anti-smoking ad with a strong argument versus a weak one.

One month after subjects watched the ads, the researchers sampled smokers' urine cotinine levels (metabolite of nicotine) and found that those who watched the strong ads had significantly less cotinine in their urine compared to their baseline versus those who watched weaker ads.

Even ads riddled with attention-grabbing tactics, the research suggests, are not effective at reducing tobacco intake unless their arguments are strong. However, ads with flashy editing and strong arguments, for example, produced better recognition.

"We investigated the two major dimensions of any piece of media, content and format, which are both important here," said Dr. Langleben, who is also an associate professor in the department of Psychiatry. "If you give someone an unconvincing ad, it doesn't matter what format you do on top of that. You can make it sensational. But in terms of effectiveness, content is more important. You're better off adding in more sophisticated editing and other special effects only if it is persuasive."

The paper may enable improved methods of design and evaluation of public health advertising, according to the authors, including first author An-Li Wang, PhD, of the Annenberg Public Policy Center at the University of Pennsylvania. And it could ultimately influence how producers shape the way ads are constructed, and how ad production budgets are allocated, considering special effects are expensive endeavors versus hiring screenwriters.

A 2009 study by Dr. Langleben and colleagues that looked solely at format found people were more likely to remember low-key, anti-smoking messages versus attention-grabbing messages. This was the first research to show that low-key versus attention-grabbing ads stimulated different patterns of activity, particularly in the frontal cortex and temporal cortex. But it did not address content strength or behavioral changes.

This new study is the first longitudinal investigation of the cognitive, behavioral, and neurophysical response to the content and format of televised anti-smoking ads, according to the authors.

"This sets the stage for science-based evaluation and design of persuasive public health advertising," said Dr. Langleben. "An ad is only as strong as its central argument, which matters more than its audiovisual presentation. Future work should consider supplementing focus groups with more technology-heavy assessments, such as brain responses to these ads, in advance of even putting the ad together in its entirety."

Co-authors of the study include Kosha Ruparel, MSE, James W. Loughead, PhD, Andrew A. Strasser, PhD, Shira J. Blady, Kevin G. Lynch, PhD, Dan Romer, PhD, and Caryn Lerman, PhD, of the Department of Psychiatry at Penn Medicine, and Joseph N. Cappella, PhD, of the Annenberg School for Communication.

This study was funded by the National Institute on Drug Abuse (R21 DA024419).

Steve Graff | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>