Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Android versus Apple

11.10.2013
A large study of smartphone applications provides a baseline for comparing the security of different mobile providers

Smartphones are big business, prompting fierce competition between providers. One major concern for consumers is whether a smartphone will keep their private data safe from malicious programs. To date, however, little independent research has been undertaken to compare security across different platforms.

Now, Jin Han and co-workers at the A*STAR Institute for Infocomm Research and Singapore Management University have conducted the first systematic comparison of the two biggest operating systems in mobile software1 — Apple’s iOS and Google’s Android. The two companies take markedly different approaches to security.

Apple famously maintains complete control over iOS security, promising that all applications are thoroughly screened before release and security patches are smoothly applied across all their phones. However, malicious software has appeared in the iTunes store.

Android, in contrast, displays everything that an application will need to access so that users can decide themselves whether to go ahead with an installation. Some critics argue that handing such control to unqualified users could present a security risk in itself.

To compare these two security models, Han and co-workers identified 1,300 popular applications that work identically on both iOS and Android. These applications, such as Facebook, often access code libraries on smartphones called security-sensitive application programing interfaces (SS-APIs), which provide private user data or grant control over devices such as the camera.

“We needed to establish a fair baseline for the security comparison between Android and iOS,” says Han. “We achieved this goal by examining the SS-API usage of cross-platform applications.”

The researchers found that 73% of iOS applications, especially advertising and analytical code, consistently accessed more SS-APIs than their counterparts on Android. Additionally, the SS-APIs invoked by iOS tended to be those providing access to sensitive resources such as user contacts.

The results imply that by allowing users to control permissions, Android may be better at preventing stealthy applications from getting hold of private information. Notably, Android also intentionally avoids using SS-APIs if non-security-sensitive APIs can be used to achieve the same functions.

To avoid jumping to conclusions about the risk to Apple users from the iOS process, Han urges caution in interpreting the results. “Mobile platforms are constantly evolving,” he says. “Our experiments were mainly conducted on iOS 5, but iOS 6 has enhanced its privacy protection so that users will be notified when an app is trying to access their contacts, calendar, photos or reminders. This may encourage developers to modify their apps so that they access less private data.”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Journal information

Han, J., Yan, Q., Gao, D., Zhou, J. & Deng, R. Comparing mobile privacy protection through cross-platform applications. The 20th Annual Network & Distributed System Security Symposium, 26 February 2013.

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>