Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Android Antiviral Products Easily Evaded, Northwestern Study Says

31.05.2013
Think your antivirus product is keeping your Android safe? Think again.
Northwestern University researchers, working with partners from North Carolina State University, tested 10 of the most popular antiviral products for Android and found each could be easily circumnavigated by even the most simple obfuscation techniques.

“The results are quite surprising,” said Yan Chen, associate professor of electrical engineering and computer science at Northwestern’s McCormick School of Engineering and Applied Science. “Many of these products are blind to even trivial transformation attacks not involving code-level changes — operations a teenager could perform.”
The researchers began by testing six known viruses on the fully functional versions of 10 of the most popular Android antiviral products, most of which have been downloaded by millions of users.

Using a tool they developed called DroidChameleon, the researchers then applied common techniques — such as simple switches in a virus’s binary code or file name, or running a command on the virus to repackage or reassemble it — to transform the viruses into slightly altered but equally damaging versions. Dozens of transformed viruses were then tested on the antiviral products, often slipping through the software unnoticed.

All of the antiviral products could be evaded, the researchers found, though their susceptibility to the transformed attacks varied.

The products’ shortcomings are due to their use of overly simple content-based signatures, special patterns the products use to screen for viruses, the researchers said. Instead, the researchers suggested, the products should use a more sophisticated static analysis to accurately seek out transformed attacks. Only one of the 10 tested tools currently utilizes a static analysis system.

The researchers chose to study Android products because it is the most commonly used operating system in the United States and worldwide, and because its open platform enabled the researchers to easily conduct analyses. They emphasized, however, that other operating systems are not necessarily more protected from virus attacks.

Antiviral products are improving. Last year, 45 percent of signatures could be evaded with trivial transformations. This year, the number has dropped to 16 percent.

“Still, these products are not as robust and effective as they must be to stop malware writers,” Chen said. “This is a cat-and-mouse game.”

A paper about the research, “Evaluating Android Anti-Malware Against Transformation Attacks,” was presented earlier this month at the 8th ACM Symposium on Information, Computer and Communications Security (ASIACCS 2013).

The research has been featured by numerous tech news outlets, including Dark Reading, Information Week, The H, Security Week, Slashdot, HelpNet Security, ISS Source, EFY Times, Tech News Daily, Fudzilla, and VirusFreePhone, as well as the German IT website Heise Security. It has also attracted the attention of several antivirus software manufacturers interested in the testing system, Chen said.

In addition to Chen, Vaibhav Rastogi, a PhD candidate at Northwestern, and Xuxian Jeng of North Carolina State University authored the work.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>