Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analyzing structural brain changes in Alzheimer's disease

18.11.2009
In a study that promises to improve diagnosis and monitoring of Alzheimer's disease, scientists at the University of California, San Diego have developed a fast and accurate method for quantifying subtle, sub-regional brain volume loss using magnetic resonance imaging (MRI). The study will be published the week of November 16 in the Proceedings of the National Academy of Sciences (PNAS).

By applying the techniques to the newly completed dataset of the multi-institution Alzheimer's Disease Neuroimaging Initiative (ADNI), the scientists demonstrated that such sub-regional brain volume measurements outperform available measures for tracking severity of Alzheimer's disease, including widely used cognitive testing and measures of global brain-volume loss.

The general pattern of brain atrophy resulting from Alzheimer's disease has long been known through autopsy studies, but exploiting this knowledge toward accurate diagnosis and monitoring of the disease has only recently been made possible by improvements in computational algorithms that automate identification of brain structures with MRI. The new methods described in the study provide rapid identification of brain sub-regions combined with measures of change in these regions across time. The methods require at least two brain scans to be performed on the same MRI scanner over a period of several months. The new research shows that changes in the brain's memory regions, in particular a region of the temporal lobe called the entorhinal cortex, offer sensitive measures of the early stages of the disease.

"Loss of volume in the hippocampus is a consistent finding when using MRI, and is a reliable predictor of cognitive decline," said Anders M. Dale, PhD, professor of neurosciences and radiology at the UC San Diego School of Medicine, who led the study. "However, we have now developed and validated imaging biomarkers to not only track brain atrophy, but distinguish the early stages of Alzheimer's disease from changes related to normal aging."

The researchers at dozens of sites across the U.S. studied nearly 300 patients with mild cognitive impairment, 169 healthy controls and 129 subjects with AD and then measured rates of sub-regional cerebral volume change for each group. Power calculations were performed to identify regions that would provide the most sensitive outcome measures in clinical trials of disease-modifying agents.

"The technique is extremely powerful, because it allows a researcher to examine exactly how much brain-volume loss has occurred in each region of the brain, including cortical regions, where we know the bad proteins of Alzheimer's disease build up," said study co-author James Brewer, MD, PhD, a neurologist and assistant professor in the Departments of Radiology and Neurosciences at UC San Diego. "We are particularly excited to use the techniques in new clinical trials, but also to reexamine old clinical trial data where global measures of brain shrinkage were applied. These new findings suggest that such global measures are less sensitive than regional measures for detecting the changes specific to Alzheimer's disease – the changes these drugs are targeting."

Additional contributors to the study include Dominic Holland, Donald J. Hagler and Christine Fennema-Notestine of UC San Diego and members of the Alzheimer's Disease Neuroimaging Initiative. ADNI is funded in part by the National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering. Anders Dale is a founder and holds equity in CorTechs Labs, Inc, and also serves on its Scientific Advisory Board.

About ADNI

The five-year, $60 million Alzheimer's Disease Neuroimaging Initiative (ADNI), a landmark research study to identify brain and other biological changes associated with memory decline, was launched in 2004 by the National Institutes of Health (NIH). The project was begun by the National Institute on Aging (NIA) at the NIH and is supported by more than a dozen other federal agencies and private-sector companies and organizations, making it the largest public-private partnership on brain research underway at the NIH. Investigators at 58 sites across the United States and Canada are involved with the study. The goal of the initiative is to speed up the search for treatments and cures for Alzheimer's disease by seeing whether imaging of the brain – through magnetic resonance imaging (MRI) or positron emission tomography (PET) scans, together with other biomarkers – can help predict and monitor the onset and progression of Alzheimer's disease.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>