Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analyzing disease transmission at the community level

29.05.2012
Researchers at the Johns Hopkins Bloomberg School of Public Health have found evidence of a role for neighborhood immunity in determining risk of dengue infection.

While it is established that immunity can be an important factor in the large-scale distribution of disease, this study demonstrates that local variation at spatial scales of just a few hundred meters can significantly alter the risk of infection, even in a highly mobile and dense urban population with significant immunity. The study is published in May 28 edition of the journal PNAS.

Dengue is a mosquito-borne disease that infects nearly 50 million people worldwide each year, resulting in more than 19,000 deaths. There are four serotypes of dengue virus (DENV1) circulating in Bangkok, Thailand, where the study was conducted. Infection with dengue provides lifelong immunity to the infecting serotype and there is evidence infection temporarily protects from infection by other serotypes. When susceptibility to other serotypes returns there is an increased risk for severe disease. For the study, the research team used the household location of 1,912 confirmed dengue cases in Bangkok that were admitted to a local children's hospital between 1995 and 2000. The available data enabled the researchers to pair dengue serotype infections with specific households.

Observations indicated that immunological memory of dengue serotypes occurs at the neighborhood level in this large urban setting. The researchers developed methods that have broad application to studying the spatiotemporal structure of disease risk where pathogen serotype or genetic information is known.

"We observe patterns of spatiotemporal dependence consistent with the expected impacts of lifelong and short-term immunity, and immune enhancement of disease at distances of under one kilometer," said Henrik Salje, lead author of the study and doctoral candidate in the Bloomberg School's Department of Epidemiology.

"By providing insight into the potential spatial scales that immunity in a population is correlated and distances over which the disease is dispersed, these findings can help us further understand how dengue is being maintained in endemic populations," said the study's senior author, Derek Cummings, PhD, assistant professor with the Bloomberg School's departments of Epidemiology and International Health.

The authors of "Revealing the microscale spatial signature of dengue transmission and immunity in an urban population" are Henrik Salje, Justin Lessler, Timothy P. Endy, Frank Curriero, Robert V. Gibbons, Ananda Nisalak, Suchitira Nimmannitya, Siripen Kalayanarooj, Richard G. Jarman, Stephen J. Thomas, Donald S. Burke and Derek A. T. Cummings.

The research was funded by grants from the Gates Foundation Vaccine Modeling Initiative, the National Institutes of Health, the Burroughs Wellcome Fund Career Award, and the Research and Policy for Infectious Disease Dynamics initiative of the NIH and Department of Homeland Security.

Follow the Johns Hopkins Bloomberg School of Public Health on Facebook at http://www.facebook.com/JohnsHopkinsSPH and Twitter at http://www.twitter.com/JohnsHopkinsSPH.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>