Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis Shows Stress on Clinicians Can Be Effectively Measured

11.11.2010
It’s no surprise that being a physician is a very stressful job and carries a lot of responsibility with it.

But two new studies from researchers at the University of Cincinnati indicate that the stressors arising from work in the clinic, where physicians are seeing patients one-on-one, can effectively be measured with hopes of improving patient care and physician job satisfaction.

Ronnie Horner, PhD, and C. Jeff Jacobson, PhD, both researchers in the department of public health sciences, say their studies, published in the online editions of the journal Medical Care on Oct. 29 and Nov. 9, showed that certain known measurement tools for assessing non-clinical work intensity can also be used to determine physician work intensity in clinical settings.

"Work intensity for physicians during office-based patient care affects quality of care and patient safety as well as job satisfaction and reimbursement,” says Horner. "There are existing intensity measures that have been used in previous studies of the work environment, but their validity in a clinical office setting hasn’t been established.”

Horner, Jerzy Szaflarski, MD, PhD, a researcher in the department of neurology and co-author on Horner’s study, and Jacobson studied two main instruments: the NASA-Task Load Index (NASA-TLX) and the Subjective Workload Assessment Technique (SWAT).

For Jacobson’s study, researchers used interviews and direct observations to obtain data.

"We wanted to document and describe subjective and observable work intensity dimensions for physicians in office-based clinical settings and examine them in relation to the measurement procedures and dimensions of the SWAT and NASA-TLX intensity measures,” he says.

The study included 19 doctors—five family physicians, five general internists, five neurologists and four surgeons. Each physician was asked to describe low- and high-intensity work responsibilities, patients and events.

To document time, physicians were observed during a routine workday. Notes and transcript data were analyzed to identify and classify different aspects of work intensity.

"We found that work intensity factors identified by physicians matched dimensions assessed by standard instruments of work intensity. Physicians also reported work intensity factors outside of the direct patient encounter,” Jacobson says, adding that across specialties, physician time spent in direct contact with patients averaged 61 percent for office-based services.

"Therefore, brief work intensity measures such as the SWAT and NASA-TLX can be used to assess work intensity in the office-based clinical setting,” he says. "However, because these measures define the physician work ‘task’ in terms of effort in the presence of the patient, substantial physician effort dedicated to pre- and post-service activities is not included in these findings.”

For Horner’s and Szaflarski’s study, the researchers used the NASA-TLX, SWAT and the Multiple Resources Questionnaire (MRQ) to measure perceived clinical work intensity associated with a given patient visit and for an entire half-day clinic; stress was measured by using the Dundee Stress State Questionnaire (DSSQ). Validity in the measurements was assessed by the correlation of the tools.

Fourteen providers from the same specialties—family medicine, internal medicine, neurology and surgery—were observed and assessed.

Researchers found that for the last patient encounter, there was a moderate to high correlation between the work intensity instruments' scores and low to moderate correlation with the distress subscale of the DSSQ.

"Provider personality was associated with reported levels of work intensity and stress,” Horner says. "Similar results were obtained when the entire clinic session was our reference.

"Therefore, existing measures of work intensity and stress appear to be valid for use in the clinical setting to generate evidence on perceived intensity and stress experienced by providers in the performance of medical services.”

Both Jacobson and Horner say more studies are needed to see if these measurements produce the same results or if the definition of measured tasks needs to be adapted to include the wider effort associated with complete patient care.

"If confirmed in larger studies, these instruments will provide a way of generating comparable information regarding the level of work intensity and stress associated with the performance of various medical services,” says Horner. "In turn, such information could help improve health care delivery, such as improved efficiency in practice organization and management.

"Improved delivery is anticipated to yield higher quality of care and greater patient safety. The new information may also guide the establishment of physician incentives that will be proportional to actual work performed.”

This project was funded in part by the American Academy of Neurology (AAN) and the American Academy of Dermatology (AAD).

Katie Pence | EurekAlert!
Further information:
http://www.uc.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>