Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New analysis shows fewer years of life lost to cancer

Dartmouth researchers say US has underestimated its progress in war on cancer

Since the enactment of the National Cancer Act in 1971, the U.S. has spent hundreds of billions of dollars in cancer research and treatment. And yet, the cancer mortality rate—the historic benchmark of progress—has only declined modestly while the mortality rates of other leading causes of death have declined substantially.

This difference has led many to question whether we've made progress in the 'War on Cancer'. The answer is definitively yes according to Norris Cotton Cancer Center research published Monday in the Journal of Clinical Oncology.

"Our findings show that we have made steady progress against the burden of many cancers for decades," said lead author Samir Soneji, PhD, assistant professor for Geisel School of Medicine at Dartmouth and the Dartmouth Institute for Health Policy and Clinical Practice. "We have underestimated the progress because, as fewer and fewer people die from heart disease, stroke, and accidents, more and more people are living longer and having more years in which to develop and die from cancer."

According to Soneji the accuracy of existing measurements for the nation's progress against the burden of cancer are limited because they reflect progress against other diseases. Soneji and his colleagues Hiram Beltrán-Sánchez, PhD, and Harold C. Sox, MD, measured the effect of cancer prevention, screening, and treatment on the burden of cancer mortality while taking account of the increased incidence of cancer because people are living longer as a result of progress against other leading causes of death.

To solve a problem first identified by the National Cancer Institute (NCI) 20 years ago, Dartmouth cancer researchers started with a measure of the burden of cancer mortality called the years of life lost due to cancer, which reflects how much longer we might expect to live if cancer did not exist. They then separated the favorable effect of advancements in cancer care from the unfavorable effect on cancer incidence due to advancements in the care of other diseases, notably cardiovascular disease.

"We estimate how the years of life lost from cancer are directly affected by cancer mortality and indirectly affected by increased cancer incidence because of greater longevity due to improvements in primary prevention, detection, and treatment of other disease," said Soneji. With this approach cancer control researchers at Norris Cotton Cancer Center were able to measure how much progress the U.S. has made against the burden of cancer mortality in America.

Soneji's research concluded that the decrease in lung cancer mortality rates between 1985 and 2005 tripled their contribution to reducing the years of life lost due to cancer. Yet not all of this progress was actually realized because other-cause mortality rates also decreased. The resulting increase in life expectancy and its consequent increase in lung cancer incidence partially offset this progress. "The decline in cigarette smoking, which began in the 1960s, is almost certainly the main reason the burden of lung cancer mortality declined," said Soneji.

Authors Soneji, Beltrán-Sánchez, and Sox also found consistent progress in reducing the burden of colorectal cancer mortality since 1985. More recent, but less consistent, progress has been made in reducing the burden on prostate and breast cancer deaths.

"Our approach reveals more accurately the aggregate contribution of cancer prevention, screening, and treatment on progress against cancer," said Soneji.

To date, survival time and mortality rates have been the leading population-level measures of cancer burden. These measures assess the effect of prevention, screening, and treatment on cancer, but they fail to account for changes in other-cause mortality rates. In contrast, Soneji and his colleagues used a more comprehensive measure that accounts for both changes in cancer mortality rates and changes in other-cause mortality rates. By accounting for progress against other leading causes of death, researchers can now more accurately assess progress against cancer. Whether historical progress in cancer continues in the future depends, in large part, on whether cigarette smoking continues to decline and effective screening detects earlier and more treatable stages of cancer.

This study was funded in part by NCI grant #RC2CA148259 and National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number KL2TR001088.

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at the Geisel School of Medicine at Dartmouth with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at

Donna Dubuc | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>