Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analysis shows fewer years of life lost to cancer

16.01.2014
Dartmouth researchers say US has underestimated its progress in war on cancer

Since the enactment of the National Cancer Act in 1971, the U.S. has spent hundreds of billions of dollars in cancer research and treatment. And yet, the cancer mortality rate—the historic benchmark of progress—has only declined modestly while the mortality rates of other leading causes of death have declined substantially.

This difference has led many to question whether we've made progress in the 'War on Cancer'. The answer is definitively yes according to Norris Cotton Cancer Center research published Monday in the Journal of Clinical Oncology.

"Our findings show that we have made steady progress against the burden of many cancers for decades," said lead author Samir Soneji, PhD, assistant professor for Geisel School of Medicine at Dartmouth and the Dartmouth Institute for Health Policy and Clinical Practice. "We have underestimated the progress because, as fewer and fewer people die from heart disease, stroke, and accidents, more and more people are living longer and having more years in which to develop and die from cancer."

According to Soneji the accuracy of existing measurements for the nation's progress against the burden of cancer are limited because they reflect progress against other diseases. Soneji and his colleagues Hiram Beltrán-Sánchez, PhD, and Harold C. Sox, MD, measured the effect of cancer prevention, screening, and treatment on the burden of cancer mortality while taking account of the increased incidence of cancer because people are living longer as a result of progress against other leading causes of death.

To solve a problem first identified by the National Cancer Institute (NCI) 20 years ago, Dartmouth cancer researchers started with a measure of the burden of cancer mortality called the years of life lost due to cancer, which reflects how much longer we might expect to live if cancer did not exist. They then separated the favorable effect of advancements in cancer care from the unfavorable effect on cancer incidence due to advancements in the care of other diseases, notably cardiovascular disease.

"We estimate how the years of life lost from cancer are directly affected by cancer mortality and indirectly affected by increased cancer incidence because of greater longevity due to improvements in primary prevention, detection, and treatment of other disease," said Soneji. With this approach cancer control researchers at Norris Cotton Cancer Center were able to measure how much progress the U.S. has made against the burden of cancer mortality in America.

Soneji's research concluded that the decrease in lung cancer mortality rates between 1985 and 2005 tripled their contribution to reducing the years of life lost due to cancer. Yet not all of this progress was actually realized because other-cause mortality rates also decreased. The resulting increase in life expectancy and its consequent increase in lung cancer incidence partially offset this progress. "The decline in cigarette smoking, which began in the 1960s, is almost certainly the main reason the burden of lung cancer mortality declined," said Soneji.

Authors Soneji, Beltrán-Sánchez, and Sox also found consistent progress in reducing the burden of colorectal cancer mortality since 1985. More recent, but less consistent, progress has been made in reducing the burden on prostate and breast cancer deaths.

"Our approach reveals more accurately the aggregate contribution of cancer prevention, screening, and treatment on progress against cancer," said Soneji.

To date, survival time and mortality rates have been the leading population-level measures of cancer burden. These measures assess the effect of prevention, screening, and treatment on cancer, but they fail to account for changes in other-cause mortality rates. In contrast, Soneji and his colleagues used a more comprehensive measure that accounts for both changes in cancer mortality rates and changes in other-cause mortality rates. By accounting for progress against other leading causes of death, researchers can now more accurately assess progress against cancer. Whether historical progress in cancer continues in the future depends, in large part, on whether cigarette smoking continues to decline and effective screening detects earlier and more treatable stages of cancer.

This study was funded in part by NCI grant #RC2CA148259 and National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number KL2TR001088.

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at the Geisel School of Medicine at Dartmouth with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

Donna Dubuc | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>