Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analysis shows fewer years of life lost to cancer

16.01.2014
Dartmouth researchers say US has underestimated its progress in war on cancer

Since the enactment of the National Cancer Act in 1971, the U.S. has spent hundreds of billions of dollars in cancer research and treatment. And yet, the cancer mortality rate—the historic benchmark of progress—has only declined modestly while the mortality rates of other leading causes of death have declined substantially.

This difference has led many to question whether we've made progress in the 'War on Cancer'. The answer is definitively yes according to Norris Cotton Cancer Center research published Monday in the Journal of Clinical Oncology.

"Our findings show that we have made steady progress against the burden of many cancers for decades," said lead author Samir Soneji, PhD, assistant professor for Geisel School of Medicine at Dartmouth and the Dartmouth Institute for Health Policy and Clinical Practice. "We have underestimated the progress because, as fewer and fewer people die from heart disease, stroke, and accidents, more and more people are living longer and having more years in which to develop and die from cancer."

According to Soneji the accuracy of existing measurements for the nation's progress against the burden of cancer are limited because they reflect progress against other diseases. Soneji and his colleagues Hiram Beltrán-Sánchez, PhD, and Harold C. Sox, MD, measured the effect of cancer prevention, screening, and treatment on the burden of cancer mortality while taking account of the increased incidence of cancer because people are living longer as a result of progress against other leading causes of death.

To solve a problem first identified by the National Cancer Institute (NCI) 20 years ago, Dartmouth cancer researchers started with a measure of the burden of cancer mortality called the years of life lost due to cancer, which reflects how much longer we might expect to live if cancer did not exist. They then separated the favorable effect of advancements in cancer care from the unfavorable effect on cancer incidence due to advancements in the care of other diseases, notably cardiovascular disease.

"We estimate how the years of life lost from cancer are directly affected by cancer mortality and indirectly affected by increased cancer incidence because of greater longevity due to improvements in primary prevention, detection, and treatment of other disease," said Soneji. With this approach cancer control researchers at Norris Cotton Cancer Center were able to measure how much progress the U.S. has made against the burden of cancer mortality in America.

Soneji's research concluded that the decrease in lung cancer mortality rates between 1985 and 2005 tripled their contribution to reducing the years of life lost due to cancer. Yet not all of this progress was actually realized because other-cause mortality rates also decreased. The resulting increase in life expectancy and its consequent increase in lung cancer incidence partially offset this progress. "The decline in cigarette smoking, which began in the 1960s, is almost certainly the main reason the burden of lung cancer mortality declined," said Soneji.

Authors Soneji, Beltrán-Sánchez, and Sox also found consistent progress in reducing the burden of colorectal cancer mortality since 1985. More recent, but less consistent, progress has been made in reducing the burden on prostate and breast cancer deaths.

"Our approach reveals more accurately the aggregate contribution of cancer prevention, screening, and treatment on progress against cancer," said Soneji.

To date, survival time and mortality rates have been the leading population-level measures of cancer burden. These measures assess the effect of prevention, screening, and treatment on cancer, but they fail to account for changes in other-cause mortality rates. In contrast, Soneji and his colleagues used a more comprehensive measure that accounts for both changes in cancer mortality rates and changes in other-cause mortality rates. By accounting for progress against other leading causes of death, researchers can now more accurately assess progress against cancer. Whether historical progress in cancer continues in the future depends, in large part, on whether cigarette smoking continues to decline and effective screening detects earlier and more treatable stages of cancer.

This study was funded in part by NCI grant #RC2CA148259 and National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number KL2TR001088.

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at the Geisel School of Medicine at Dartmouth with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

Donna Dubuc | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>