Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New analysis shows fewer years of life lost to cancer

Dartmouth researchers say US has underestimated its progress in war on cancer

Since the enactment of the National Cancer Act in 1971, the U.S. has spent hundreds of billions of dollars in cancer research and treatment. And yet, the cancer mortality rate—the historic benchmark of progress—has only declined modestly while the mortality rates of other leading causes of death have declined substantially.

This difference has led many to question whether we've made progress in the 'War on Cancer'. The answer is definitively yes according to Norris Cotton Cancer Center research published Monday in the Journal of Clinical Oncology.

"Our findings show that we have made steady progress against the burden of many cancers for decades," said lead author Samir Soneji, PhD, assistant professor for Geisel School of Medicine at Dartmouth and the Dartmouth Institute for Health Policy and Clinical Practice. "We have underestimated the progress because, as fewer and fewer people die from heart disease, stroke, and accidents, more and more people are living longer and having more years in which to develop and die from cancer."

According to Soneji the accuracy of existing measurements for the nation's progress against the burden of cancer are limited because they reflect progress against other diseases. Soneji and his colleagues Hiram Beltrán-Sánchez, PhD, and Harold C. Sox, MD, measured the effect of cancer prevention, screening, and treatment on the burden of cancer mortality while taking account of the increased incidence of cancer because people are living longer as a result of progress against other leading causes of death.

To solve a problem first identified by the National Cancer Institute (NCI) 20 years ago, Dartmouth cancer researchers started with a measure of the burden of cancer mortality called the years of life lost due to cancer, which reflects how much longer we might expect to live if cancer did not exist. They then separated the favorable effect of advancements in cancer care from the unfavorable effect on cancer incidence due to advancements in the care of other diseases, notably cardiovascular disease.

"We estimate how the years of life lost from cancer are directly affected by cancer mortality and indirectly affected by increased cancer incidence because of greater longevity due to improvements in primary prevention, detection, and treatment of other disease," said Soneji. With this approach cancer control researchers at Norris Cotton Cancer Center were able to measure how much progress the U.S. has made against the burden of cancer mortality in America.

Soneji's research concluded that the decrease in lung cancer mortality rates between 1985 and 2005 tripled their contribution to reducing the years of life lost due to cancer. Yet not all of this progress was actually realized because other-cause mortality rates also decreased. The resulting increase in life expectancy and its consequent increase in lung cancer incidence partially offset this progress. "The decline in cigarette smoking, which began in the 1960s, is almost certainly the main reason the burden of lung cancer mortality declined," said Soneji.

Authors Soneji, Beltrán-Sánchez, and Sox also found consistent progress in reducing the burden of colorectal cancer mortality since 1985. More recent, but less consistent, progress has been made in reducing the burden on prostate and breast cancer deaths.

"Our approach reveals more accurately the aggregate contribution of cancer prevention, screening, and treatment on progress against cancer," said Soneji.

To date, survival time and mortality rates have been the leading population-level measures of cancer burden. These measures assess the effect of prevention, screening, and treatment on cancer, but they fail to account for changes in other-cause mortality rates. In contrast, Soneji and his colleagues used a more comprehensive measure that accounts for both changes in cancer mortality rates and changes in other-cause mortality rates. By accounting for progress against other leading causes of death, researchers can now more accurately assess progress against cancer. Whether historical progress in cancer continues in the future depends, in large part, on whether cigarette smoking continues to decline and effective screening detects earlier and more treatable stages of cancer.

This study was funded in part by NCI grant #RC2CA148259 and National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number KL2TR001088.

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at the Geisel School of Medicine at Dartmouth with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at

Donna Dubuc | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>