Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Analysis Reveals Clearer Picture of Brain’s Language Areas

Language is a defining aspect of what makes us human. Although some brain regions are known to be associated with language, neuroscientists have had a surprisingly difficult time using brain imaging technology to understand exactly what these ‘language areas’ are doing. In a new study published in the Journal of Neurophysiology, MIT neuroscientists report on a new method to analyze brain imaging data – one that may paint a clearer picture of how our brain produces and understands language.

Research with patients who developed specific language deficits (such as the inability to comprehend passive sentences) following brain injury suggest that different aspects of language may reside in different parts of the brain. But attempts to find these functionally specific regions of the brain with current neuroimaging technologies have been inconsistent and controversial.

One reason for this inconsistency may be due to the fact that most previous studies relied on group analyses in which brain imaging data were averaged across multiple subjects – a computation that could introduce statistical noise and bias into the analyses.

“Because brains differ in their folding patterns and in how functional areas map onto these folds, activations obtained in functional MRI studies often do not precisely ‘line up’ across brains,” explained Evelina Fedorenko, first author of the study and a postdoctoral associate in Nancy Kanwisher’s lab at the McGovern Institute for Brain Research at MIT. “ Some regions of the brain thought to be involved in language are also geographically close to regions that support other cognitive processes like music, arithmetic, or general working memory. By spatially averaging brain data across subjects you may see an activation ‘blob’ that looks like it supports both language and, say, arithmetic, even in cases where in every single subject these two processes are supported by non-overlapping nearby bits of cortex.”

The only way to get around this problem, according to Fedorenko, is to first define “regions of interest” in each individual subject and then investigate those regions by examining their responses to various new tasks. To do this, they developed a “localizer” task where subjects read either sentences or sequences of pronounceable nonwords.



By subtracting the nonword-activated regions from the sentence-activated regions, the researchers found a number of language regions that were quickly and reliably identified in individual brains. Their new method revealed higher selectivity for sentences compared to nonwords than a traditional group analysis applied to the same data.

“This new, more sensitive method allows us now to investigate questions of functional specificity between language and other cognitive functions, as well as between different aspects of language,” Fedorenko concludes. “We’re more likely to discover which patches of cortex are specialized for language and which also support other cognitive functions like music and working memory. Understanding the relationship between language and the rest of condition is one of key questions in cognitive neuroscience.”

Next Steps: Fedorenko published the tools used in this study on her website: The goal for the future, she argues, is to adopt a common standard for identifying language-sensitive areas so that knowledge about their functions can be accumulated across studies and across labs. “The eventual goal is of course to understand the precise nature of the computations each brain region performs,” Fedorenko says, “but that’s a tall order.”

Source: Fedorenko E, Hsieh P, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. A new method for fMRI investigations of language: defining ROIs functionally in individual subjects. J Neurophysiol (April 21, 2010). DOI:10.1152/jn.00032.2010. This study is available online at:

Funding: Ellison Medical Foundation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, McGovern Institute for Brain Research.

Julie Pryor | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>