Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Analysis Reveals Clearer Picture of Brain’s Language Areas

14.05.2010
Language is a defining aspect of what makes us human. Although some brain regions are known to be associated with language, neuroscientists have had a surprisingly difficult time using brain imaging technology to understand exactly what these ‘language areas’ are doing. In a new study published in the Journal of Neurophysiology, MIT neuroscientists report on a new method to analyze brain imaging data – one that may paint a clearer picture of how our brain produces and understands language.

Research with patients who developed specific language deficits (such as the inability to comprehend passive sentences) following brain injury suggest that different aspects of language may reside in different parts of the brain. But attempts to find these functionally specific regions of the brain with current neuroimaging technologies have been inconsistent and controversial.

One reason for this inconsistency may be due to the fact that most previous studies relied on group analyses in which brain imaging data were averaged across multiple subjects – a computation that could introduce statistical noise and bias into the analyses.

“Because brains differ in their folding patterns and in how functional areas map onto these folds, activations obtained in functional MRI studies often do not precisely ‘line up’ across brains,” explained Evelina Fedorenko, first author of the study and a postdoctoral associate in Nancy Kanwisher’s lab at the McGovern Institute for Brain Research at MIT. “ Some regions of the brain thought to be involved in language are also geographically close to regions that support other cognitive processes like music, arithmetic, or general working memory. By spatially averaging brain data across subjects you may see an activation ‘blob’ that looks like it supports both language and, say, arithmetic, even in cases where in every single subject these two processes are supported by non-overlapping nearby bits of cortex.”

The only way to get around this problem, according to Fedorenko, is to first define “regions of interest” in each individual subject and then investigate those regions by examining their responses to various new tasks. To do this, they developed a “localizer” task where subjects read either sentences or sequences of pronounceable nonwords.

Sample sentence: THE DOG CHASED THE CAT ALL DAY LONG

Sample nonword sequence: BOKER DESH HE THE DRILES LER CICE FRISTY’S

By subtracting the nonword-activated regions from the sentence-activated regions, the researchers found a number of language regions that were quickly and reliably identified in individual brains. Their new method revealed higher selectivity for sentences compared to nonwords than a traditional group analysis applied to the same data.

“This new, more sensitive method allows us now to investigate questions of functional specificity between language and other cognitive functions, as well as between different aspects of language,” Fedorenko concludes. “We’re more likely to discover which patches of cortex are specialized for language and which also support other cognitive functions like music and working memory. Understanding the relationship between language and the rest of condition is one of key questions in cognitive neuroscience.”

Next Steps: Fedorenko published the tools used in this study on her website: http://web.mit.edu/evelina9/www/funcloc.html. The goal for the future, she argues, is to adopt a common standard for identifying language-sensitive areas so that knowledge about their functions can be accumulated across studies and across labs. “The eventual goal is of course to understand the precise nature of the computations each brain region performs,” Fedorenko says, “but that’s a tall order.”

Source: Fedorenko E, Hsieh P, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. A new method for fMRI investigations of language: defining ROIs functionally in individual subjects. J Neurophysiol (April 21, 2010). DOI:10.1152/jn.00032.2010. This study is available online at: http://jn.physiology.org/cgi/content/short/jn.00032.2010v1

Funding: Ellison Medical Foundation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, McGovern Institute for Brain Research.

Julie Pryor | Newswise Science News
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>