Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Analysis of fracking wastewater yields some surprises

Hydraulically fractured natural gas wells are producing less wastewater per unit of gas recovered than conventional wells would.

But the scale of fracking operations in the Marcellus shale region is so vast that the wastewater it produces threatens to overwhelm the region's wastewater disposal capacity, according to new analysis by researchers at Duke and Kent State universities.

Hydraulically fractured natural gas wells in the Marcellus shale region of Pennsylvania produce only about 35 percent as much wastewater per unit of gas recovered as conventional wells, according to the analysis, which appears in the journal Water Resources Research.

"We found that on average, shale gas wells produced about 10 times the amount of wastewater as conventional wells, but they also produced about 30 times more natural gas," said Brian Lutz, assistant professor of biogeochemistry at Kent State, who led the analysis while he was a postdoctoral research associate at Duke. "That surprised us, given the popular perception that hydraulic fracturing creates disproportionate amounts of wastewater."

However, the study shows the total amount of wastewater from natural gas production in the region has increased by about 570 percent since 2004 as a result of increased shale gas production there.

"It's a double-edged sword," Lutz said. "On one hand, shale gas production generates less wastewater per unit. On the other hand, because of the massive size of the Marcellus resource, the overall volume of water that now has to be transported and treated is immense. It threatens to overwhelm the region's wastewater-disposal infrastructure capacity."

"This is the reality of increasing domestic natural gas production," said Martin Doyle, professor of river science at Duke's Nicholas School of the Environment. "There are significant tradeoffs and environmental impacts whether you rely on conventional gas or shale gas."

The researchers analyzed gas production and wastewater generation for 2,189 gas wells in Pennsylvania, using publicly available data reported by industry to the state's Department of Environmental Protection, in compliance with state law.

In hydraulic fracturing, large volumes of water, sand and chemicals are injected deep underground into gas wells at high pressure to crack open shale rock and extract its embedded natural gas. As the pace of shale gas production grows, so too have concerns about groundwater contamination and what to do with all the wastewater.

Another surprise that emerged, Doyle said, was that well operators classified only about a third of the wastewater from Marcellus wells as flowback from hydraulic fracturing; most of it was classified as brine.

"A lot of attention, to date, has focused on chemicals in the flowback that comes out of a well following hydraulic fracturing," he said. "However, the amount of brine produced – which contains high levels of salts and other natural pollutants from shale rock – has received less attention even though it is no less important."

Brine can be generated by wells over much longer periods of time than flowback, he noted, and studies have shown that some of the pollutants in brine can be as difficult to treat as many of the chemicals used in hydraulic fracturing fluids.

"We need to come up with technological and logistical solutions to address these concerns, including better ways to recycle and treat the waste on site or move it to places where it can be safely disposed," Doyle said. "Both of these are in fact developing rapidly."

"Opponents have targeted hydraulic fracturing as posing heightened risks, but many of the same environmental challenges presented by shale gas production would exist if we were expanding conventional gas production," Lutz added. "We have to accept the reality that any effort to substantially boost domestic energy production will present environmental costs."

The Marcellus shale formation stretches from New York to Virginia and accounts for about 10 percent of all natural gas produced in the United States today. Much of the current production is in Pennsylvania. Prior to technological advances in horizontal well drilling and hydraulic fracturing that made the shale gas accessible, the region accounted for only about 2 percent of the nation's output.

Lutz and Doyle conducted their analysis with no external funding.

Aurana Lewis, who graduated in 2012 with a master of environmental management degree from Duke's Nicholas School, co-authored the paper.

Tim Lucas | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>