Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Analysis Finds Strong Compatibility Between Molecular, Fossil Data in Evolutionary Studies

Paleontologists have completed a rigorous study that has culminated in a new approach to reconciling the conflict between fossil and molecular data in evolutionary studies.

During a seminar at another institution several years ago, University of Chicago paleontologist David Jablonski fielded a hostile question: Why bother classifying organisms according to their physical appearance, let alone analyze their evolutionary dynamics, when molecular techniques had already invalidated that approach?

With more than a few heads in the audience nodding their agreement, Jablonski, the William Kenan Jr. Professor in Geophysical Sciences, saw more work to be done. The question launched him on a rigorous study that has culminated in a new approach to reconciling the conflict between fossil and molecular data in evolutionary studies.

For more than two decades, debate has waxed and waned between biologists and paleontologists about the reliability of their different methods. Until now, attention has focused on the dramatically different evolutionary history of certain lineages as determined by fossils or by genetics.

Scientists using molecular techniques assert that genetics more accurately determines evolutionary relationships than does a comparison of physical characteristics preserved in fossils. But how inaccurate, really, were the fossils? Jablonski and the University of Michigan’s John A. Finarelli have published the first quantitative assessment of these assumed discrepancies in the Proceedings of the National Academy of Sciences.

They compared the molecular data to data based on the kinds of features used to distinguish fossil lineages for 228 mammal and 197 mollusk lineages at the genus level (both wolves and dogs belong to the genus Canis, for example).

No matter how they looked at it, the lineages defined by their fossil forms “showed an imperfect but very good fit to the molecular data,” Jablonski said. The fits were generally far better than random. The few exceptions included freshwater clams, “a complete disaster,” he said.

Jablonski and Finarelli (Ph.D.’07, University of Chicago), then decided to push their luck. They looked at the fits again, but this time focused on geographic range and body size. The result: a “spectacularly robust” match between the fossil and molecular data.

Jablonski interprets the results as good news for evolutionary studies. The work backs up a huge range of analyses among living and fossil animals, from trends in increasing body size in mammal lineages, to the dramatic ups and downs of diversity reported in the fossil record of evolutionary bursts and mass extinctions.

“Our study also points the way toward new partnerships with molecular biology, as we straighten out the mismatches that we did find,” he said.

Steve Koppes | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>