Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis Finds Strong Compatibility Between Molecular, Fossil Data in Evolutionary Studies

30.04.2009
Paleontologists have completed a rigorous study that has culminated in a new approach to reconciling the conflict between fossil and molecular data in evolutionary studies.

During a seminar at another institution several years ago, University of Chicago paleontologist David Jablonski fielded a hostile question: Why bother classifying organisms according to their physical appearance, let alone analyze their evolutionary dynamics, when molecular techniques had already invalidated that approach?

With more than a few heads in the audience nodding their agreement, Jablonski, the William Kenan Jr. Professor in Geophysical Sciences, saw more work to be done. The question launched him on a rigorous study that has culminated in a new approach to reconciling the conflict between fossil and molecular data in evolutionary studies.

For more than two decades, debate has waxed and waned between biologists and paleontologists about the reliability of their different methods. Until now, attention has focused on the dramatically different evolutionary history of certain lineages as determined by fossils or by genetics.

Scientists using molecular techniques assert that genetics more accurately determines evolutionary relationships than does a comparison of physical characteristics preserved in fossils. But how inaccurate, really, were the fossils? Jablonski and the University of Michigan’s John A. Finarelli have published the first quantitative assessment of these assumed discrepancies in the Proceedings of the National Academy of Sciences.

They compared the molecular data to data based on the kinds of features used to distinguish fossil lineages for 228 mammal and 197 mollusk lineages at the genus level (both wolves and dogs belong to the genus Canis, for example).

No matter how they looked at it, the lineages defined by their fossil forms “showed an imperfect but very good fit to the molecular data,” Jablonski said. The fits were generally far better than random. The few exceptions included freshwater clams, “a complete disaster,” he said.

Jablonski and Finarelli (Ph.D.’07, University of Chicago), then decided to push their luck. They looked at the fits again, but this time focused on geographic range and body size. The result: a “spectacularly robust” match between the fossil and molecular data.

Jablonski interprets the results as good news for evolutionary studies. The work backs up a huge range of analyses among living and fossil animals, from trends in increasing body size in mammal lineages, to the dramatic ups and downs of diversity reported in the fossil record of evolutionary bursts and mass extinctions.

“Our study also points the way toward new partnerships with molecular biology, as we straighten out the mismatches that we did find,” he said.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>