Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis confirms that nano-related research has strong multidisciplinary roots

09.09.2009
Mapping nanotechnology

The burgeoning research fields of nanoscience and nanotechnology are commonly thought to be highly multidisciplinary because they draw on many areas of science and technology to make important advances.

Research reported in the September issue of the journal Nature Nanotechnology finds that nanoscience and nanotechnology indeed are highly multidisciplinary – but not much more so than other modern disciplines such as medicine or electrical engineering that also draw on multiple areas of science and technology.

With $1.6 billion scheduled to be invested in nano-related research during 2010, assessing the multidisciplinary nature of the field could be important to policy-makers, research managers, technology-transfer officers and others responsible for managing the investment and creating a supportive environment for it.

"Research in nanoscience and nanotechnology is not just a collection of isolated 'stove pipes' drawing knowledge from one narrow discipline, but rather is quite interdisciplinary," said Alan Porter, co-author of the paper and a professor emeritus in the Schools of Industrial and Systems Engineering and Public Policy at the Georgia Institute of Technology. "We found that research in any one category of nanoscience and nanotechnology tends to cite research in many other categories."

The study was sponsored by the National Science Foundation through the Center for Nanotechnology in Society at Arizona State University.

Porter and collaborator Jan Youtie, manager of policy services in Georgia Tech's Enterprise Innovation Institute, analyzed abstracts from more than 30,000 papers with "nano" themes that were published between January and July of 2008. They found that although materials science and chemistry dominated the papers, fields as diverse as clinical medicine, biomedical sciences and physics also contributed.

These "nanopapers" studied by the researchers appeared in more than 6,000 journals that were part of a database known as the Science Citation Index (SCI). The researchers found nanopapers in 151 of SCI's 175 subject categories, with 52 of the categories containing more than 100 such papers.

To explore how well knowledge was integrated across the disciplines, the researchers also studied the journal articles that were cited in the nanopapers. They found more than one million cited references, a mean of 33 per paper.

Using text mining techniques to extract sources from the cited references, they further found that 45 subject categories were cited by five percent or more of the nanopapers – and 98 categories that were cited by at least one percent of the papers. The text mining was done using VantagePoint software developed by Georgia Tech and Search Technology Inc.

Six subject categories dominated both the original nanopapers and the cited references. Each of the six contained 10 percent or more of the original nanopapers and was cited by 39 percent or more of the references. They are:

Materials science, multidisciplinary
Physics, applied
Chemistry, physical
Physics, condensed matter
Nanoscience and nanotechnology
Chemistry, multidisciplinary
The researchers found considerable interdisciplinary representation within those six categories. Though 86 percent of the 3,863 nanopapers in the "nanoscience and nanotechnology" category cited papers in materials science, another 80 subject categories had 40 or more cited papers each.

This representation continued even outside the top six categories. The 808 nanopapers in electrical engineering cited papers in journals from 138 different subject categories, while the 435 nanopapers in organic chemistry cited papers in journals from 140 different subject categories.

The researchers also used a metric they called an "integration score" to gauge how interdisciplinary nature of a particular paper or set of papers. The integration score ranged from zero for stand-alone disciplines that don't cite work from other disciplines to one for highly-integrated disciplines that heavily cite work from other areas.

Integration scores ranged from 0.65 for nanoscience and nanotechnology to 0.60 for electrical engineering and 0.64 for organic chemistry.

"Our results show the multidisciplinary nature of research in nanoscience and nanotechnology, although the integration scores make it clear that much non-nano research is also comparably interdisciplinary," Porter said. "Much of the nanoresearch is also concentrated in 'macrodisciplines' such as materials science and chemistry, and researchers tend to cite work from neighboring fields more often than work in more distant fields."

Understanding the interdisciplinary nature of nanoscience and nanotechnology could be important to creating the right environment for the field to produce results.

"There is a broad perspective that most scientific breakthroughs occur at the interstices among more established fields," said Youtie. "Nanotechnology R&D is believed to be an area where disciplines converge. If nanotechnology does have a strong multidisciplinary character, attention to communication across disciplines will be an important feature in its emergence."

In the future, Porter and Youtie hope to explore other policy-focused nano topics, including:

How research and development patterns can forecast likely commercial innovations;
The societal implications of nanoscience and nanotechnology innovations so that potential negative efforts can be mitigated before they occur;
How corporations develop their strategies for nanoscience and nanotechnology, and

Where nanoscience and hotspots for research and development – called "nanodistricts" – exist around the world.

"A nanodistrict is a regional concentration of research institutions and firms where nanotechnologies are developed," Youtie explained. "Although nanotechnology applications are deployed widely across the world, a smaller number of nanodistrict locations are appearing where nanotechnology research, development and initial commercialization are clustered."

The Center for Nanotechnology in Society is part of a broad U.S. effort to anticipate the societal implications of nanotechnology. Georgia Tech's role in the multi-university effort is to characterize the type of nanotechnology research being done and to identify early indicators of emerging technologies in that field.

Youtie and Porter are also part of Georgia Tech's Program in Science, Technology and Innovation Policy (STIP), a collaboration of the School of Public Policy and the Enterprise Innovation Institute that advances research and practice in science, technology, innovation and spatial development policy.

The findings and opinions contained in this news release are those of the researchers and do not necessarily reflect the views of the National Science Foundation (NSF).

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>