Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An important study for Parkinson’s disease

12.12.2014

IRCM researchers uncover a mechanism regulating dopamine levels in the brain

Researchers in Montréal led by Jacques Drouin, D.Sc., uncovered a mechanism regulating dopamine levels in the brain by working on a mouse model of late onset Parkinson’s disease. The study, conducted in collaboration with Dr. Rory A. Fisher from the Department of Pharmacology at the University of Iowa Carver College of Medicine, is published online today by the scientific journal PLoS Genetics.

Using gene expression profiling, a method to measure the activity of thousands of genes, researchers investigated dopaminergic neurons in the midbrain, which are nerve cells that use dopamine to send signals to other nerve cells. These neurons are known to degenerate in Parkinson’s disease.

“We identified the Rgs6 gene for its restricted expression in dopaminergic neurons,” explains Dr. Drouin, Director of the Molecular Genetics laboratory at the IRCM. “We had previously shown that this gene is itself controlled by a transcription factor called Pitx3, which plays an important role in the survival of these neurons.”

“Through our study, we discovered that a defective Rgs6 gene causes the death of these neurons,” adds Dr. Drouin. “More specifically, we found that when we remove the Rgs6 gene, this relieves a brake against excessive dopaminergic signalling. As a result, excess free dopamine accumulation causes cellular stress, which, in turn, causes the neurons to die. Our work thus indicates that Rgs6 could be a new target for the development of drugs against Parkinson’s disease.”

According to Parkinson Society Canada, nearly 100,000 Canadians have Parkinson’s disease. This progressive neurodegenerative disease primarily affects voluntary, controlled movement. It results from the loss of cells responsible for producing dopamine, which acts as a messenger between brain cells that control the body’s movements.

This research was supported by the Canadian Institutes of Health Research (CIHR) and by the Parkinson Society Canada. For more information on this discovery, please refer to the article summary published online by PLoS Genetics: http://www.plosgenetics.org/doi/pgen.1004863

About Jacques Drouin
Jacques Drouin obtained his Doctor of Science in Physiology from Université Laval. He is IRCM Research Professor and Director of the Molecular Genetics research unit. Dr. Drouin is Research Professor in the Department of Biochemistry at the Université de Montréal. He is also associate member of the Department of Medicine (Division of Experimental Medicine), adjunct professor of the Department of Anatomy and Cell Biology, and adjunct member of the Department of Biochemistry at McGill University. In addition, he is an elected member of the Academy of Sciences of the Royal Society of Canada. For more information, visit www.ircm.qc.ca/drouin

About the IRCM
The IRCM (www.ircm.qc.ca) is a renowned biomedical research institute located in the heart of Montréal’s university district. Founded in 1967, it is currently comprised of 35 research units and four specialized research clinics (cholesterol, cystic fibrosis, diabetes and obesity, hypertension). The IRCM is affiliated with the Université de Montréal, and the IRCM Clinic is associated to the Centre hospitalier de l’Université de Montréal (CHUM). It also maintains a long-standing association with McGill University. The IRCM is funded by the Quebec ministry of Economy, Innovation and Export Trade (Ministère de l’Économie, de l’Innovation et des Exportations).

Download the news release as a PDF document

For more information and to schedule an interview with Dr. Drouin, please contact:

Julie Langelier, Communications Officer (IRCM)
julie.langelier@ircm.qc.ca | (514) 987-5555

Lucette Thériault, Communications Director (IRCM)
lucette.theriault@ircm.qc.ca | (514) 987-5535

Julie Langelier | EurekAlert!
Further information:
http://www.ircm.qc.ca/Medias/Communiques/Pages/detail.aspx?pID=109&PFLG=1033

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>