Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amyotrophic Lateral Sclerosis May Involve A Form Of Sudden, Rapid Aging Of The Immune System

09.10.2009
Studies in laboratory mice and humans suggest that the immune system ages prematurely and malfunctions

Premature aging of the immune system appears to play a role in the development of amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, according to research scientists from the Maxine Dunitz Neurosurgical Institute at Cedars-Sinai Medical Center, the Weizmann Institute of Science in Israel, and Sheba Medical Center in Israel.

A study published in the Journal of Cellular and Molecular Medicine shows that CD4+ T cells, which grow and mature in the thymus before entering the bloodstream, are reduced in number in patients who have ALS as the thymus shrinks and malfunctions. Theoretically, devising therapies to support or replace these cells could be a strategy in treating the disease.

The research was led by Michal Schwartz, Ph.D., a visiting professor at the Center of Neuroimmunology and Neurogenesis in the Department of Neurosurgery at Cedars-Sinai and professor of neuroimmunology at the Weizmann Institute in Rehovot, Israel.

The findings are consistent with evidence collected over a decade by Schwartz’s group suggesting that a well-functioning immune system plays a pivotal role in maintaining, protecting and repairing cells of the central nervous system. Studies conducted in animals have shown that boosting immune T-cell levels may reduce symptoms and slow progression of certain neurodegenerative diseases.

Results from the current study suggest that premature aging of the immune system and thus a decrease in protection from immune T cells could contribute to the aggressive and rapid progression of amyotrophic lateral sclerosis, which attacks motor neurons – nerve cells responsible for muscle strength and voluntary movements. The researchers found that thymic malfunction occurs simultaneously with motor neuron dysfunction, both in laboratory mice bred to mimic amyotrophic lateral sclerosis and in humans suffering from the disease.

Motor neurons extend from the brain to the spinal cord and from the spinal cord to the muscles of the body. Amyotrophic lateral sclerosis damages motor neurons in the spinal cord, leading to their death, the inability to control muscle action, and the wasting away of muscle tissue. About 5,600 people are diagnosed with amyotrophic lateral sclerosis each year. Up to 10 percent of cases are inherited because of certain gene mutations but the majority occur in the general population with no known cause.

Life expectancy varies greatly but generally ranges from two to five years after diagnosis. More than half of patients survive more than three years, and about 5 percent live 20 years, according to the ALS Association. The disease has been known to spontaneously stop progressing, and in rare cases, the symptoms have actually reversed. Amyotrophic lateral sclerosis is often referred to as Lou Gehrig disease in recognition of the baseball great whose career with the New York Yankees was cut short by the disease in 1939. He died two years later.

The thymus gland, where immune cells called T lymphocytes mature before entering the bloodstream, normally reaches its peak in size and production in childhood. It then slowly shrinks, becoming virtually nonexistent in the elderly, but the lifespan of newly produced T cells ranges from three to 30 years.

This study found that the thymus glands of mice and patients with the disease undergo accelerated degeneration. In addition to using laboratory tests that provide a noninvasive measure of thymic function, the researchers performed imaging scans on three relatively young patients and found no evidence of thymic remnants. Additional studies showed that patients with the disease had dramatically reduced numbers of five genes that are known to support immune responses. Patients also were found to have a significant deficiency of another gene that may make T cells susceptible to a process that causes cell death.

“If T-cell malfunction is confirmed to be a contributing factor to ALS, as we propose, therapeutic strategies may be aimed at overcoming this deficiency through rebuilding, restoring or transplanting the thymus,” said Schwartz, the journal article’s senior author.

The study was supported by the Israeli ALS Research Association, the Israeli Academy of Science, the Maxine Dunitz Neurosurgical Institute, and the Marciano Family Foundation.

Citation: The Journal of Cellular and Molecular Medicine, “Thymic Involution in Amyotrophic Lateral Sclerosis,” published online July 24, 2009.

Sandy Van | Cedars-Sinai Medical Center
Further information:
http://www.csmc.edu/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>