Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amping Up Solar in the Snowy North

23.10.2013
Solar farms are a no-brainer in warm and sunny places, but what about in northern climes where snow can cover and even shut down the panels?

Michigan Technological University’s Keweenaw Research Center (KRC) is now part of a two-year study that will help answer that question. The aims are to gauge how snow affects solar panels’ power generation and determine the best ways to overcome any losses.


Marcia Goodrich/Michigan Technological University

Michigan Tech solar energy scientist Joshua Pearce, left, and Jay Meldrum, director of the Keweenaw Research Center, with the array of solar panels behind KRC. Even on this gloomy day, they were cranking out electricity.

The international engineering firm DNV GL, which specializes in large energy- and sustainability-related projects, has built an array of solar photovoltaic panels behind KRC, each set at a different angle, from 0 degrees (flat) to 45 degrees. “If you tilt them at 60 degrees, almost no snow sticks to the panels, but you also lose a lot of sunlight when they are not facing the sky,” said Tim Townsend, a principal engineer for solar services with DNV GL.

Based on similar studies, year-round losses can be anywhere from a few percent (as found by Michigan Tech in a study looking at Ontario data) to 12 percent (39 degree tilt) to 18 percent (0 degree tilt), which Townsend measured near Lake Tahoe in California. Townsend’s group developed a model to predict how snowfall and other related variables would affect energy generation. Now, they will test their model in collaboration with Michigan Tech using data from the KRC solar array and other test sites in Colorado, Pennsylvania and California.

A small variance in power generation may not make a big difference for a homeowner with solar panels. However, it’s a big deal in industry.

“We do predictions on behalf of commercial lenders being asked to foot the bill for big solar arrays,” said Townsend. Good data “makes them more financeable.” Eventually, the study results will be publicly available through the KRC website and through solar energy simulation programs provided by the US National Renewable Energy Laboratory.

“Everybody who wants to develop solar energy in snowy climates on a large scale will need this data,” said Joshua Pearce, an associate professor of materials science and engineering/electrical and computer engineering at Michigan Tech, who is participating in the project. “In the olden days, you’d only see solar farms in places like Arizona, and Spain. Now, large solar installations are found throughout the northern US and Canada.”

Meanwhile, KRC plans to apply the lessons learned from the test solar panels in its own back yard. “Michigan Tech will be going full bore on stopping snow losses,” said KRC Director Jay Meldrum.

In addition, KRC is testing another method to boost its solar power generation. They will be adjusting the panels' angles throughout the year to track the seasonal position of the sun, which is close to the horizon in winter and nearly directly overhead at the summer solstice. "Pointing the array at the proper altitude can help to maximize energy generation while reducing snow losses," Meldrum said. You can view both tests on the KRC webcams.

Marcia Goodrich, writer, mtunews@mtu.edu, 906-487-2343
Joshua Pearce, pearce@mtu.edu, 906-487-1466
Jay Meldrum, jmeldrum@mtu.edu, 906-487-3178

Marcia Goodrich | Newswise
Further information:
http://www.mtu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>