Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amazon carbon sink threatened by drought

06.03.2009
The Amazon is surprisingly sensitive to drought, according to new research conducted throughout the world's largest tropical forest. The 30-year study, published today in Science, provides the first solid evidence that drought causes massive carbon loss in tropical forests, mainly through killing trees.

"For years the Amazon forest has been helping to slow down climate change. But relying on this subsidy from nature is extremely dangerous", said Professor Oliver Phillips, from the University of Leeds and the lead author of the research.

"If the earth's carbon sinks slow or go into reverse, as our results show is possible, carbon dioxide levels will rise even faster. Deeper cuts in emissions will be required to stabilise our climate."

The study, a global collaboration between more than 40 institutions, was based on the unusual 2005 drought in the Amazon. This gave scientists a glimpse into the region's future climate, in which a warming tropical North Atlantic may cause hotter and more intense dry seasons.

The 2005 drought sharply reversed decades of carbon absorption, in which Amazonia helped slow climate change.

In normal years the forest absorbs nearly 2 billion tonnes of carbon dioxide. The drought caused a loss of more than 3 billion tonnes. The total impact of the drought - 5 billion extra tonnes of carbon dioxide in the atmosphere - exceeds the annual emissions of Europe and Japan combined.

"Visually, most of the forest appeared little affected, but our records prove tree death rates accelerated. Because the region is so vast, even small ecological effects can scale-up to a large impact on the planet's carbon cycle," explained Professor Phillips.

Some species, including some important palm trees, were especially vulnerable", said Peruvian botanist and co-author Abel Monteagudo, "showing that drought threatens biodiversity too."

The Amazon accounts for more than half of the world's rainforest, covering an area 25 times as great as the United Kingdom. No other ecosystem on Earth is home to so many species nor exerts such control on the carbon cycle.

The study involved 68 scientists from 13 countries working in RAINFOR, a unique research network dedicated to monitoring the Amazonian forests.

To calculate changes in carbon storage they examined more than 100 forest plots across the Amazon's 600 million hectares, identified and measured over 100,000 trees, and recorded tree deaths as well as new trees. Weather patterns were also carefully measured and mapped.

In the wake of the 2005 drought the RAINFOR team took advantage of this huge natural experiment, and focused their measurements to assess how the drought had affected the forest.

The study found that for at least 25 years the Amazon forest acted as a vast carbon sink. A similar process has also been occurring in Africa.

In fact, over recent decades the tropical forests have absorbed one fifth of global fossil fuel emissions.

But in 2005 this process was reversed. Tree death accelerated most where drought was strongest, and locations subject even to mild drying were affected. Because of the study, we now know the precise sensitivity of the Amazon to warming and drought.

If repeated, Amazon droughts will accelerate climate warming and make future droughts even more damaging.

Clare Ryan | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>