Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternating training improves motor learning

19.10.2011
Kennedy Krieger researchers find that varying practice sessions may benefit people with motor disorders

Learning from one's mistakes may be better than practicing to perfection, according to a new study appearing in the October 19 issue of The Journal of Neuroscience. Researchers from the Kennedy Krieger Institute found that forcing people to switch from a normal walking pattern to an unusual one — and back again — made them better able to adjust to the unusual pattern the following day. The findings may help improve therapy for people relearning how to walk following stroke or other injury.

Previous studies in the lab of Amy Bastian, PhD, Director of Motion Analysis Laboratory at Kennedy Krieger Institute, found that walking on a split-belt treadmill — which forces one leg to move at a faster speed — can help correct walking deficits in children and adults with weakness on one side of the body caused by stroke, brain damage, or other conditions. In the new study, Bastian and her colleagues found healthy adults forced to alternate between learning and unlearning an unusual walking pattern on a split-belt treadmill relearned the pattern faster the next day.

"The standard approach to helping stroke patients relearn walking and other motor skills is to tell them how to move better, and then practice it over and over again," Bastian said. "The results of our study suggest that the most effective approach might be to repeatedly challenge patients with new training situations."

In the current study, the researchers trained 52 healthy adults to walk on a split-belt treadmill. One group received 15 minutes of constant exposure to belts moving at different speeds, while another — the switch group — walked on belts that alternated between different speeds and identical speeds. Twenty-four hours later, both groups returned to the treadmill to walk on the belts moving at different speeds. The adults in the switch group relearned how to resume the unusual walking pattern faster than those who had constant exposure to different speeds.

"The people in the switch group 'learned to learn' by experiencing more of the awkward, limping leg pattern that occurs right after a switch in speeds," Bastian said.

Contrary to the researchers' predictions, they also found practicing a completely different walking pattern did not interfere with the ability to relearn the first one. A third group practiced walking on a split-belt treadmill that forced the right leg to move faster for 15 minutes, followed by 15 minutes in which the left leg moved faster. When they returned the next day, they too relearned the initial walking pattern slightly faster than those who trained only on a single pattern.

The research was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development.

About the Kennedy Krieger Institute

Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD serves more than 16,000 individuals each year through inpatient and outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop while pioneering new interventions and earlier diagnosis. For more information on Kennedy Krieger Institute, visit www.kennedykrieger.org.

About the Motion Analysis Laboratory

The Motion Analysis Laboratory at Kennedy Krieger Institute studies performance and learning of reaching and walking movements in healthy adults and children, and in different patient populations including: adults and children with cerebellar damage, adults with hemiparesis from stroke, adults with multiple sclerosis or adrenomyeloneuropathy, children with hemispherectomy, children with cerebral palsy and children with autism. All studies are designed to test specific hypotheses about the function of different brain areas, the cause of specific impairments and/or the effects of different interventions.

Mary Ellen Hackett | EurekAlert!
Further information:
http://www.kennedykrieger.org

Further reports about: Analysis Laboratory brain area brain damage healthy adults stroke walking deficits

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>