Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air pollution from traffic increases odds of hospital readmission for asthma

27.03.2014

Higher exposure to traffic-related air pollution (TRAP) dramatically increases the odds of readmission to the hospital for asthma – but only for white children, according to a new Cincinnati Children's Hospital Medical Center study.

The study shows that white children exposed to high levels of TRAP are three times more likely to be readmitted for asthma than white children with low TRAP exposure. Levels of TRAP exposure were not associated with increased risk of readmission of black children, despite their having overall higher rates of asthma readmission than white children.

The study is published in The Journal of Pediatrics.

"Although black children in our study had a higher rate of asthma readmission overall, TRAP exposure was not a discernible factor for these children. This suggests that other factors such as social stress or other environmental factors may be particularly relevant in this population," says Nicholas Newman, DO, a pediatrician at Cincinnati Children's and lead author of the study.

"For example, caregivers of black children reported significantly higher rates of psychological distress and were more likely to live in poorer housing conditions, with visible cockroaches or holes or cracks in the walls. These other factors may mask or overwhelm the impact of TRAP in black children."

The researchers studied 758 children between the ages of 1 and 16 admitted to Cincinnati Children's for asthma or wheezing. Fifty-eight percent were black and 32 percent white. Nineteen percent of all children were readmitted within the 12-month period.

TRAP is a complex mixture of chemicals and particles. In urban areas, diesel exhaust particles make up a substantial portion of particles, whose size is linked to their potential for causing health problems. These very small particles have greater potential to be inhaled into the lung, where they can cause swelling that blocks airways.

Exposure to TRAP in this study was estimated using a previously developed model that sampled ambient air at 27 sites in the Cincinnati area between 2001 and 2006. This model was used to estimate exposure for children enrolled in the study based on their home address.

Asthma is the most common chronic disease in children, affecting approximately 7.1 million children in the United States. The estimated annual cost of childhood asthma due to environmental factors, including air pollution is $2.2 billion.

"This study adds to the evidence that TRAP exposure worsens the health of children with asthma," says Robert Kahn, MD, MPH, associate director of general and community pediatrics at Cincinnati Children's and senior author of the study. "We hope that this study can inform public policy. It may also suggest ways to personalize patient care based on environmental risks."

###

The study is the most recent to be published as part of the Greater Cincinnati Asthma Risks Study (GCARS), which seeks to understand the causes of hospital readmission, particularly for low-income and minority children. The GCARS was funded by support from the National Institutes of Health (1R01AI88116) and the Center for Clinical and Translational Science and Training (NCRR/NIH ULI-RR026314-01).

Jim Feuer | EurekAlert!
Further information:
http://www.cchmc.org

Further reports about: Air Pollution Asthma cockroaches conditions distress levels social stress

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>