Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air pollution from traffic increases odds of hospital readmission for asthma

27.03.2014

Higher exposure to traffic-related air pollution (TRAP) dramatically increases the odds of readmission to the hospital for asthma – but only for white children, according to a new Cincinnati Children's Hospital Medical Center study.

The study shows that white children exposed to high levels of TRAP are three times more likely to be readmitted for asthma than white children with low TRAP exposure. Levels of TRAP exposure were not associated with increased risk of readmission of black children, despite their having overall higher rates of asthma readmission than white children.

The study is published in The Journal of Pediatrics.

"Although black children in our study had a higher rate of asthma readmission overall, TRAP exposure was not a discernible factor for these children. This suggests that other factors such as social stress or other environmental factors may be particularly relevant in this population," says Nicholas Newman, DO, a pediatrician at Cincinnati Children's and lead author of the study.

"For example, caregivers of black children reported significantly higher rates of psychological distress and were more likely to live in poorer housing conditions, with visible cockroaches or holes or cracks in the walls. These other factors may mask or overwhelm the impact of TRAP in black children."

The researchers studied 758 children between the ages of 1 and 16 admitted to Cincinnati Children's for asthma or wheezing. Fifty-eight percent were black and 32 percent white. Nineteen percent of all children were readmitted within the 12-month period.

TRAP is a complex mixture of chemicals and particles. In urban areas, diesel exhaust particles make up a substantial portion of particles, whose size is linked to their potential for causing health problems. These very small particles have greater potential to be inhaled into the lung, where they can cause swelling that blocks airways.

Exposure to TRAP in this study was estimated using a previously developed model that sampled ambient air at 27 sites in the Cincinnati area between 2001 and 2006. This model was used to estimate exposure for children enrolled in the study based on their home address.

Asthma is the most common chronic disease in children, affecting approximately 7.1 million children in the United States. The estimated annual cost of childhood asthma due to environmental factors, including air pollution is $2.2 billion.

"This study adds to the evidence that TRAP exposure worsens the health of children with asthma," says Robert Kahn, MD, MPH, associate director of general and community pediatrics at Cincinnati Children's and senior author of the study. "We hope that this study can inform public policy. It may also suggest ways to personalize patient care based on environmental risks."

###

The study is the most recent to be published as part of the Greater Cincinnati Asthma Risks Study (GCARS), which seeks to understand the causes of hospital readmission, particularly for low-income and minority children. The GCARS was funded by support from the National Institutes of Health (1R01AI88116) and the Center for Clinical and Translational Science and Training (NCRR/NIH ULI-RR026314-01).

Jim Feuer | EurekAlert!
Further information:
http://www.cchmc.org

Further reports about: Air Pollution Asthma cockroaches conditions distress levels social stress

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>