Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air pollution from traffic increases odds of hospital readmission for asthma

27.03.2014

Higher exposure to traffic-related air pollution (TRAP) dramatically increases the odds of readmission to the hospital for asthma – but only for white children, according to a new Cincinnati Children's Hospital Medical Center study.

The study shows that white children exposed to high levels of TRAP are three times more likely to be readmitted for asthma than white children with low TRAP exposure. Levels of TRAP exposure were not associated with increased risk of readmission of black children, despite their having overall higher rates of asthma readmission than white children.

The study is published in The Journal of Pediatrics.

"Although black children in our study had a higher rate of asthma readmission overall, TRAP exposure was not a discernible factor for these children. This suggests that other factors such as social stress or other environmental factors may be particularly relevant in this population," says Nicholas Newman, DO, a pediatrician at Cincinnati Children's and lead author of the study.

"For example, caregivers of black children reported significantly higher rates of psychological distress and were more likely to live in poorer housing conditions, with visible cockroaches or holes or cracks in the walls. These other factors may mask or overwhelm the impact of TRAP in black children."

The researchers studied 758 children between the ages of 1 and 16 admitted to Cincinnati Children's for asthma or wheezing. Fifty-eight percent were black and 32 percent white. Nineteen percent of all children were readmitted within the 12-month period.

TRAP is a complex mixture of chemicals and particles. In urban areas, diesel exhaust particles make up a substantial portion of particles, whose size is linked to their potential for causing health problems. These very small particles have greater potential to be inhaled into the lung, where they can cause swelling that blocks airways.

Exposure to TRAP in this study was estimated using a previously developed model that sampled ambient air at 27 sites in the Cincinnati area between 2001 and 2006. This model was used to estimate exposure for children enrolled in the study based on their home address.

Asthma is the most common chronic disease in children, affecting approximately 7.1 million children in the United States. The estimated annual cost of childhood asthma due to environmental factors, including air pollution is $2.2 billion.

"This study adds to the evidence that TRAP exposure worsens the health of children with asthma," says Robert Kahn, MD, MPH, associate director of general and community pediatrics at Cincinnati Children's and senior author of the study. "We hope that this study can inform public policy. It may also suggest ways to personalize patient care based on environmental risks."

###

The study is the most recent to be published as part of the Greater Cincinnati Asthma Risks Study (GCARS), which seeks to understand the causes of hospital readmission, particularly for low-income and minority children. The GCARS was funded by support from the National Institutes of Health (1R01AI88116) and the Center for Clinical and Translational Science and Training (NCRR/NIH ULI-RR026314-01).

Jim Feuer | EurekAlert!
Further information:
http://www.cchmc.org

Further reports about: Air Pollution Asthma cockroaches conditions distress levels social stress

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>