Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How aging normal cells fuel tumor growth and metastasis

15.06.2012
Preclinical study links aging and cancer, with lethal host metabolism in the tumor microenvironment

It has long been known that cancer is a disease of aging, but a molecular link between the two has remained elusive.

Now, researchers at the Kimmel Cancer Center at Jefferson (KCC) have shown that senescence (aging cells which lose their ability to divide) and autophagy (self-eating or self-cannibalism) in the surrounding normal cells of a tumor are essentially two sides of the same coin, acting as "food" to fuel cancer cell growth and metastasis.

Michael P. Lisanti, M.D., Ph.D., Professor and Chair of Stem Cell Biology and Regenerative Medicine at Jefferson Medical College of Thomas Jefferson University and a member of the KCC, and his team previously discovered that cancer cells induce an oxidative stress response (autophagy) in nearby cells of the tumor microenvironment to feed themselves and grow.

In this study, senescent cells appear to have many of the characteristics of these autophagic cancer-associated fibroblasts and to be part of the same physiological process. In other words, normal neighboring cells that are becoming senescent or "old" are directly making food to "feed" the cancer. Aging literally fuels cancer cell growth.

Since senescence is thought to reflect biological aging, this research on autophagy-induced senescence may explain why cancer incidence dramatically increases exponentially with advanced age, by providing a "fertile soil" to support the anabolic growth of "needy" cancer cells.

The findings were reported in the June 15 issue of Cell Cycle.

"This research merges the two paradigms of aging and cancer, and it also brings in cell metabolism," said Dr. Lisanti. "We provide genetic support for the importance of 'two-compartment tumor metabolism' in driving tumor growth and metastasis via a very simple energy transfer mechanism. Senescence and autophagy metabolically support tumor growth and metastasis."

Simply put, aging is the metabolic engine that drives cancer growth.

To test this link, the researchers developed a genetically tractable model system to directly study the compartment-specific role of autophagy in tumor growth and metastasis. First, they took human fibroblasts immortalized with telomerase and transfected them with autophagy genes.

Next, they validated that these fibroblasts show features of mitophagy, mitochondrial dysfunction and a shift toward aerobic glycolysis, with increases in lactate and ketone production, mimicking the behavior of cancer-associated fibroblasts. They observed that autophagic-senescent fibroblasts promoted metastasis, when co-injected with human breast cancer cells, by more than 10-fold.

Thus, metastasis may be ultimately determined by aging or senescent cells in the tumor microenvironment, rather than by the cancer cells themselves. This finding completely changes how we view cancer as a disease.

This observation directly calls into question the longstanding notion that cancer is a cell-autonomous genetic disease. Rather, it appears that cancer is really a disease of host aging, which fuels tumor growth and metastasis, thus, determining clinical outcome. Normal aging host cells are actually the key to unlocking effective anti-cancer therapy.

In the study, the autophagic fibroblasts also showed features of senescence. What's more, the senescent cells shifted toward aerobic glycolysis, and were primarily confined to the tumor stromal compartment.

Autophagy action is also clearly compartment specific, since the researchers showed that autophagy induction in human breast cancer cells resulted in diminished tumor growth. Therefore, selective induction of self-cannibalism in cancer cells is a new therapeutic target for the prevention of tumor growth and metastasis. In this strategy, cancer cells actually eat themselves, reversing tumor growth and metastasis.

To stop tumor growth and metastasis, researchers will need to "cut off the fuel supply" which is provided by aging senescent cells, before it gets to cancer cells by targeting autophagy and senescence in the tumor microenvironment.

These findings are paradigm shifting and will usher in a completely new era for anti-cancer drug development, according to the researchers. Such approaches for targeting the "autophagy-senescence transition" could have important implications for preventing tumor growth and metastasis, and effectively overcoming drug resistance in cancer cells.

"Rapidly proliferating cancer cells are energetically dependent on the aging host tumor stroma," Dr. Lisanti said. "As such, removing or targeting the aging tumor stroma would then stop tumor growth and metastasis. Thus, the aging stroma is a new attractive metabolic or therapeutic target for cancer prevention."

A clear byproduct of this research would also be the development new anti-aging drugs to effectively combat, stop or reverse aging, thereby preventing a host of human diseases, particularly cancer.

This work was supported by grants from the Breast Cancer Alliance the American Cancer Society, Young Investigator Award from the Margaret Q. Landenberger Research Foundation, grants from the NIH/NCI (R01-CA-080250; R01-CA-098779; R01-CA-120876; R01-AR-055660), and the Susan G. Komen Breast Cancer Foundation. Other grants include NIH/NCI (R01-CA-70896, R01-CA-75503, R01-CA-86072 and R01-CA-107382) and the Dr. Ralph and Marian C. Falk Medical Research Trust. The Kimmel Cancer Center was supported by the NIH/ NCI Cancer Center Core grant P30-CA-56036 (to R.G.P.). This project is funded, in part, under a grant with the Pennsylvania Department of Health. This work was also supported, in part, by a Centre grant in Manchester from Breakthrough Breast Cancer in the UK and an Advanced ERC Grant from the European Research Council.

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>