Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aging impacts epigenome in human skeletal muscle

Buck Institute research involves first genome-wide DNA methylation study in disease-free tissue

Our epigenome is a set of chemical switches that turn parts of our genome off and on at strategic times and locations. These switches help alter the way our cells act and are impacted by environmental factors including diet, exercise and stress.

Research at the Buck Institute reveals that aging also effects the epigenome in human skeletal muscle. The study, appearing on line in Aging Cell, provides a method to study sarcopenia, the degenerative loss of muscle mass that begins in middle age.

The results came from the first genome-wide DNA methylation study in disease-free individuals. DNA methylation involves the addition of a methyl group to the DNA and is involved in a particular layer of epigenetic regulation and genome maintenance. In this study researchers compared DNA methylation in samples of skeletal muscle taken from healthy young (18 - 27 years of age) and older (68 – 89 years of age) males. Buck faculty and lead scientist Simon Melov, PhD, said researchers looked at more than 480,000 sites throughout the genome.

"We identified a suite of epigenetic markers that completely separated the younger from the older individuals – there was a change in the epigenetic fingerprint," said Melov. "Our findings were statistically significant; the chances of that happening are infinitesimal."

Melov said scientists identified about six-thousand sites throughout the genome that were differentially methylated with age and that some of those sites are associated with genes that regulate activity at the neuromuscular junction which connects the nervous system to our muscles. "It's long been suspected that atrophy at this junction is a weak link in sarcopenia, the loss of muscle mass we get with age," said Melov. "Maybe this differential methylation causes it. We don't know."

Studying the root causes and development of sarcopenia in humans is problematic; the research would require repeated muscle biopsies taken over time, something that would be hard to collect. Melov says now that the epigenetic markers have been identified in humans, the goal would be to manipulate those sites in laboratory animals. "We would be able to observe function over time and potentially use drugs to alter the rate of DNA methylation at those sites," he said. Melov says changes in DNA methylation are very common in cancer and that the process is more tightly controlled in younger people.

Other Buck Institute researchers involved in the study include Sean Mooney, Jim Flynn and Artem Zykovich. Mark Tarnopolsky, Dan Ogborn, and Lauren McNeil from the McMaster Children's Hospital, Neuromuscular and Neurometabolic Unit in Hamilton, Ontario contributed as did Alan Hubbard, School of Public Health, University of California Berkeley; Mario F. Fraga, Cancer Epigenetics Laboratory, Universidad de Oviedo, Oveido, Spain; and Chad Kerksick, Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM. The work was supported by the National Institutes of Health (R01-LM009722, U54-HG004028, UL1DE019608), The Glenn Foundation for Medical Research, the Buck Trust and Canadian Institutes of Health Research-Institute of Aging.

Citation: "Genome-wide DNA methylation changes with age in disease-free human skeletal muscle," Aging Cell

About the Buck Institute for Research on Aging

The Buck Institute is the U.S.'s first independent research organization devoted to Geroscience – focused on the connection between normal aging and chronic disease. Based in Novato, CA, The Buck is dedicated to extending "Healthspan", the healthy years of human life and does so utilizing a unique interdisciplinary approach involving laboratories studying the mechanisms of aging and those focused on specific diseases. Buck scientists strive to discover new ways of detecting, preventing and treating age-related diseases such as Alzheimer's and Parkinson's, cancer, cardiovascular disease, macular degeneration, osteoporosis, diabetes and stroke. In their collaborative research, they are supported by the most recent developments in genomics, proteomics, bioinformatics and stem cell technologies.

Kris Rebillot | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>