Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aging impacts epigenome in human skeletal muscle

21.11.2013
Buck Institute research involves first genome-wide DNA methylation study in disease-free tissue

Our epigenome is a set of chemical switches that turn parts of our genome off and on at strategic times and locations. These switches help alter the way our cells act and are impacted by environmental factors including diet, exercise and stress.

Research at the Buck Institute reveals that aging also effects the epigenome in human skeletal muscle. The study, appearing on line in Aging Cell, provides a method to study sarcopenia, the degenerative loss of muscle mass that begins in middle age.

The results came from the first genome-wide DNA methylation study in disease-free individuals. DNA methylation involves the addition of a methyl group to the DNA and is involved in a particular layer of epigenetic regulation and genome maintenance. In this study researchers compared DNA methylation in samples of skeletal muscle taken from healthy young (18 - 27 years of age) and older (68 – 89 years of age) males. Buck faculty and lead scientist Simon Melov, PhD, said researchers looked at more than 480,000 sites throughout the genome.

"We identified a suite of epigenetic markers that completely separated the younger from the older individuals – there was a change in the epigenetic fingerprint," said Melov. "Our findings were statistically significant; the chances of that happening are infinitesimal."

Melov said scientists identified about six-thousand sites throughout the genome that were differentially methylated with age and that some of those sites are associated with genes that regulate activity at the neuromuscular junction which connects the nervous system to our muscles. "It's long been suspected that atrophy at this junction is a weak link in sarcopenia, the loss of muscle mass we get with age," said Melov. "Maybe this differential methylation causes it. We don't know."

Studying the root causes and development of sarcopenia in humans is problematic; the research would require repeated muscle biopsies taken over time, something that would be hard to collect. Melov says now that the epigenetic markers have been identified in humans, the goal would be to manipulate those sites in laboratory animals. "We would be able to observe function over time and potentially use drugs to alter the rate of DNA methylation at those sites," he said. Melov says changes in DNA methylation are very common in cancer and that the process is more tightly controlled in younger people.

Other Buck Institute researchers involved in the study include Sean Mooney, Jim Flynn and Artem Zykovich. Mark Tarnopolsky, Dan Ogborn, and Lauren McNeil from the McMaster Children's Hospital, Neuromuscular and Neurometabolic Unit in Hamilton, Ontario contributed as did Alan Hubbard, School of Public Health, University of California Berkeley; Mario F. Fraga, Cancer Epigenetics Laboratory, Universidad de Oviedo, Oveido, Spain; and Chad Kerksick, Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM. The work was supported by the National Institutes of Health (R01-LM009722, U54-HG004028, UL1DE019608), The Glenn Foundation for Medical Research, the Buck Trust and Canadian Institutes of Health Research-Institute of Aging.

Citation: "Genome-wide DNA methylation changes with age in disease-free human skeletal muscle," Aging Cell

About the Buck Institute for Research on Aging

The Buck Institute is the U.S.'s first independent research organization devoted to Geroscience – focused on the connection between normal aging and chronic disease. Based in Novato, CA, The Buck is dedicated to extending "Healthspan", the healthy years of human life and does so utilizing a unique interdisciplinary approach involving laboratories studying the mechanisms of aging and those focused on specific diseases. Buck scientists strive to discover new ways of detecting, preventing and treating age-related diseases such as Alzheimer's and Parkinson's, cancer, cardiovascular disease, macular degeneration, osteoporosis, diabetes and stroke. In their collaborative research, they are supported by the most recent developments in genomics, proteomics, bioinformatics and stem cell technologies.

Kris Rebillot | EurekAlert!
Further information:
http://www.thebuck.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>