Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What you see affects what you hear

04.03.2009
Understanding what a friend is saying in the hubbub of a noisy party can present a challenge – unless you can see the friend's face.

New research from Baylor College of Medicine in Houston and the City College of New York shows that the visual information you absorb when you see can improve your understanding of the spoken words by as much as sixfold.

Your brain uses the visual information derived from the person's face and lip movements to help you interpret what you hear, and this benefit increases when the sound quality rises to moderately noisy, said Dr. Wei Ji Ma, assistant professor of neuroscience at BCM and the report's lead author, in a report that appears online today in the open access journal PLoS ONE.

"Most people with normal hearing lip-read very well, even though they don't think so," said Ma. "At certain noise levels, lip-reading can increase word recognition performance from 10 to 60 percent correct."

However, when the environment is very noisy or when the voice you are trying to understand is very faint, lip-reading is difficult.

"We find that a minimum sound level is needed for lip-reading to be most effective," said Ma.

This research is the first to study word recognition in a natural setting, where people report freely what they believe is being said. Previous experiments only used limited lists of words for people to choose from.

The lip-reading data help scientists understand how the brain integrates two different kinds of stimuli to come to a conclusion.

Ma and his colleagues constructed a mathematical model that allowed them to predict how successful a person will be at integrating the visual and auditory information.

People actually combine the two stimuli close to optimally, Ma said. What they perceive depends on the reliability of the stimuli.

"Suppose you are a detective," he said. "You have two witnesses to a crime. One is very precise and believable. The other one is not as believable. You take information from both and weigh the believability of each in your determination of what happened."

In a way, lip-reading involves the same kind of integration of information in the brain, he said.

In experiments, videos of individuals were shown in which a person said a word. If the person is presented normally, the visual information provides a great benefit when it is integrated with the auditory information, especially when there is moderate background noise. Surprisingly, if the person is just a "cartoon" that does not truly mouth the word, then the visual information is still helpful, though not as much.

In another study, the person mouths one word but the audio projects another, and often the brain integrates the two stimuli into a totally different perceived word.

"The mathematical model can predict how often the person will understand the word correctly in all these contexts," Ma said.

An example of the visual and audio stimuli used in the experiment can be found at http://bme.engr.ccny.cuny.edu/faculty/parra/bayes-speech/.

Others who took part in this research include Xiang Zhou, Lars A. Ross, John J. Foxe and Lucas C. Parra of The City College of New York in New York City.

When the embargo lifts, the full report can be found at http://dx.plos.org/10.1371/journal.pone.0004638

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>