Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aesop's fable 'the crow and the pitcher' more fact than fiction

10.08.2009
New research indicates that rooks, members of the crow family, are able to solve complex problems using tools

In Aesop's fable 'The crow and the pitcher' a thirsty crow uses stones to raise the level of water in a pitcher to quench its thirst.

A new study published online today (06 August) in the journal Current Biology demonstrates that rooks, birds belonging to the corvid (or crow) family, are able to solve complex problems using tools and can easily master the same technique demonstrated in Aesop's fable.

Christopher Bird of the University of Cambridge, lead author of the paper, highlighted the importance of the findings, stating: "Corvids are remarkably intelligent, and in many ways rival the great apes in their physical intelligence and ability to solve problems. The only other animal known to complete a similar task is the orang-utan.

"This is remarkable considering their brain is so different to the great apes'. Although it has been speculated in folklore, empirical tests are needed to examine the extent of their intelligence and how they solve problems."

In the first part of the study, at which point the researchers varied the height of the water, the four rooks which were the subject of the research used stones to raise the water level to reach a worm floating on top. The clever birds proved very adept and were highly successful regardless of the starting level of the water and the number of the stones needed.

Two of the birds were successful on their first try to raise the height of the water to a level at which the worm floating on top could be reached whilst the other two birds needed a second try.

The birds were also highly accurate in their ability, adding the exact number of stones needed to raise the water level to the necessary height. Additionally, rather than attempting to reach the worm after each stone was dropped, they apparently estimated the number needed from the outset and waited until the appropriate water level was reached before dipping their beaks into the tube.

In the second experiment the rooks were presented with stones which varied in size. The rooks selected larger stones over smaller ones (although not straight away). The scientists speculate that the birds learnt rapidly that the larger stones displaced more water and they were therefore able to obtain the reward more quickly than using small stones.

In the third experiment, the rooks were observed to recognise that sawdust could not be manipulated in the same manner as water. Therefore when presented with the choice between a tube half-filled with either sawdust or water, rooks dropped the pebbles into the tube containing water and not the sawdust.

Although the study demonstrates the flexible nature of tool use in rooks, they are not believed to use tools in the wild.

"Wild tool use appears to be dependent on motivation," Bird said. "Rooks do not use tools in the wild because they do not need to, not because they can't. They have access to other food that can be acquired without using tools."

As Bird noted, that fits nicely with Aesop's maxim, demonstrated by the crow: "Necessity is the mother of invention."

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

Further reports about: Aesop's fable corvid orang-utan physical intelligence sawdust worm floating

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>