Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aeroacoustics Study Helps Control Noise from UAVs

26.01.2009
Engineers at the Georgia Tech Research Institute (GTRI) are investigating the sources of noise in unmanned aerial vehicles (UAVs) in an effort to quiet the aircraft, which are becoming increasingly important to the U.S. military.

Unmanned aerial vehicles (UAVs) are playing increasingly important roles in many fields. Ranging in size from the huge Global Hawk aircraft to hand-held machines, these remotely controlled devices are growing ever more vital to the U.S. armed forces in roles that include surveillance and reconnaissance.

In some instances, UAVs must fly close to their targets to gather data effectively and may evade enemy detection with sophisticated techniques like radar stealth, infrared stealth and special camouflage. Aeroacoustics researchers at the Georgia Tech Research Institute (GTRI) are investigating an additional kind of stealth that could also be vital to these UAVs – technology that can evade enemy ears.

“With missions changing, and many vehicles flying at lower altitudes, the acoustic signature of a tactical UAV has become more and more critical,” said senior research engineer Rick Gaeta.

Help could come from a field of expertise known as acoustic signature control. It’s a technology that could prove highly valuable to the further development of covert, low-altitude UAV systems. The work is sponsored by GTRI’s independent research program and the U.S. Department of Defense.

Gaeta, an aeroacoustics specialist, is working with a GTRI research team to find ways to reduce a UAV’s sound footprint. The researchers have characterized UAV noise using both ground-based methods and vehicle flight tests.

The GTRI investigators’ central task has involved characterizing the acoustic signature of a UAV’s propulsion system, which typically consists of a piston engine and a propeller but could also be electrically or fuel-cell powered. The researchers needed to know how much noise comes from the engine’s exhaust as opposed to the spinning propeller.

That task might seem straightforward, but real-world experiments seldom are, said Gaeta, who is working on the project with senior research engineers Gary Gray and Kevin Massey.

For instance, isolating engine noise from propeller noise is problematic. Removing the propeller from the engine also eliminates the cooling source – the propeller wash. But switching to another cooling source typically adds unwanted noise, which in turn complicates taking sound measurements. To operate the engine without a propeller attached, GTRI investigators had to search for quiet ways to provide both substitute cooling and a load for the engine to spin.

Another complex testing issue involves measuring acoustic performance and engine performance simultaneously – a key to making the right design tradeoffs. Researchers utilized two special acoustic chambers at GTRI’s Cobb County Research Facility – the Anechoic Flight Simulation Facility and the Static Jet Anechoic Facility.

The flight simulation facility is a unique chamber with a 29-inch air duct that can simulate forward-flight velocities while also allowing precise acoustic measurements. To take full advantage of the flight-simulation chamber, Gaeta’s team built a special dynamometer capable of driving a small UAV engine and a propeller. By placing the engine-dynamometer unit in the simulation chamber, the researchers could test both engine and acoustic performance, thereby providing data for UAV design tradeoffs.

“We have been able to develop a unique testing capability as a result of this project,” Gaeta explained. “It allows us to separate acoustics issues into their component parts, and that in turn helps us to attack those problems.”

Investigators are also focusing on other issues, such as how to quiet an unmanned aircraft so that its own sound doesn’t interfere with the task of monitoring ground noise using airborne sensors.

They want to find a systems solution because UAVs are highly integrated. For example, a concept that rendered a UAV acoustically undetectable might also affect the UAV’s infrared and radar signatures. And changes in those signatures could interfere with the aircraft’s ability to evade hostile infrared detection equipment. These complexities have led to new collaborations with other GTRI researchers who specialize in radar and infrared signatures.

In addition to ground-based research methods, GTRI investigators have acoustically measured UAVs in the field, where real atmospheric and meteorological effects modify the acoustic signature reaching the ground. They have acquired considerable data using GTRI owned and operated UAVs. They also traveled to U.S. military installations and made measurements of UAVs being flown there.

“We’ve been able to learn a lot from piggybacking on other flying programs,” Gaeta added. “Those efforts have helped us to develop optimal methods for capturing UAV acoustic data and to find the best ways to process it for analysis.”

Working from its findings, the research team has identified specific acoustic measures that could lead to truly covert, low-altitude UAVs.

“Our next step is to put our findings into a prototype for testing,” Gaeta said. “We believe that we have the means to make tactical UAVs much quieter.”

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>