Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aeroacoustics Study Helps Control Noise from UAVs

26.01.2009
Engineers at the Georgia Tech Research Institute (GTRI) are investigating the sources of noise in unmanned aerial vehicles (UAVs) in an effort to quiet the aircraft, which are becoming increasingly important to the U.S. military.

Unmanned aerial vehicles (UAVs) are playing increasingly important roles in many fields. Ranging in size from the huge Global Hawk aircraft to hand-held machines, these remotely controlled devices are growing ever more vital to the U.S. armed forces in roles that include surveillance and reconnaissance.

In some instances, UAVs must fly close to their targets to gather data effectively and may evade enemy detection with sophisticated techniques like radar stealth, infrared stealth and special camouflage. Aeroacoustics researchers at the Georgia Tech Research Institute (GTRI) are investigating an additional kind of stealth that could also be vital to these UAVs – technology that can evade enemy ears.

“With missions changing, and many vehicles flying at lower altitudes, the acoustic signature of a tactical UAV has become more and more critical,” said senior research engineer Rick Gaeta.

Help could come from a field of expertise known as acoustic signature control. It’s a technology that could prove highly valuable to the further development of covert, low-altitude UAV systems. The work is sponsored by GTRI’s independent research program and the U.S. Department of Defense.

Gaeta, an aeroacoustics specialist, is working with a GTRI research team to find ways to reduce a UAV’s sound footprint. The researchers have characterized UAV noise using both ground-based methods and vehicle flight tests.

The GTRI investigators’ central task has involved characterizing the acoustic signature of a UAV’s propulsion system, which typically consists of a piston engine and a propeller but could also be electrically or fuel-cell powered. The researchers needed to know how much noise comes from the engine’s exhaust as opposed to the spinning propeller.

That task might seem straightforward, but real-world experiments seldom are, said Gaeta, who is working on the project with senior research engineers Gary Gray and Kevin Massey.

For instance, isolating engine noise from propeller noise is problematic. Removing the propeller from the engine also eliminates the cooling source – the propeller wash. But switching to another cooling source typically adds unwanted noise, which in turn complicates taking sound measurements. To operate the engine without a propeller attached, GTRI investigators had to search for quiet ways to provide both substitute cooling and a load for the engine to spin.

Another complex testing issue involves measuring acoustic performance and engine performance simultaneously – a key to making the right design tradeoffs. Researchers utilized two special acoustic chambers at GTRI’s Cobb County Research Facility – the Anechoic Flight Simulation Facility and the Static Jet Anechoic Facility.

The flight simulation facility is a unique chamber with a 29-inch air duct that can simulate forward-flight velocities while also allowing precise acoustic measurements. To take full advantage of the flight-simulation chamber, Gaeta’s team built a special dynamometer capable of driving a small UAV engine and a propeller. By placing the engine-dynamometer unit in the simulation chamber, the researchers could test both engine and acoustic performance, thereby providing data for UAV design tradeoffs.

“We have been able to develop a unique testing capability as a result of this project,” Gaeta explained. “It allows us to separate acoustics issues into their component parts, and that in turn helps us to attack those problems.”

Investigators are also focusing on other issues, such as how to quiet an unmanned aircraft so that its own sound doesn’t interfere with the task of monitoring ground noise using airborne sensors.

They want to find a systems solution because UAVs are highly integrated. For example, a concept that rendered a UAV acoustically undetectable might also affect the UAV’s infrared and radar signatures. And changes in those signatures could interfere with the aircraft’s ability to evade hostile infrared detection equipment. These complexities have led to new collaborations with other GTRI researchers who specialize in radar and infrared signatures.

In addition to ground-based research methods, GTRI investigators have acoustically measured UAVs in the field, where real atmospheric and meteorological effects modify the acoustic signature reaching the ground. They have acquired considerable data using GTRI owned and operated UAVs. They also traveled to U.S. military installations and made measurements of UAVs being flown there.

“We’ve been able to learn a lot from piggybacking on other flying programs,” Gaeta added. “Those efforts have helped us to develop optimal methods for capturing UAV acoustic data and to find the best ways to process it for analysis.”

Working from its findings, the research team has identified specific acoustic measures that could lead to truly covert, low-altitude UAVs.

“Our next step is to put our findings into a prototype for testing,” Gaeta said. “We believe that we have the means to make tactical UAVs much quieter.”

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>