Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Adults take their physical activity on the road

New public health research by a Purdue University professor could help shed light on how the environment can influence physical activity, especially when it comes to where people live.

"We are not just measuring physical activity, but we are linking it to a location using small activity monitors and global positioning system devices," said Philip J. Troped, an assistant professor of health and kinesiology. "A better understanding of how neighborhood environments influence people's behaviors could help us to get more people to be physically active and healthy."

For example, a better understanding of where physical activity occurs and the characteristics of those areas could be used to develop more tailored intervention programs or messages to encourage physical activity at those locations, as well as to shape policy for urban planning and transportation systems.

"Research has shown that there is a positive relationship between characteristics of neighborhood-built environments and physical activity, but one of the limitations is that the data have been collected with devices that only measure activity, so assumptions are made that physical activity is mostly happening around where people live - and that may not be the case," he said.

Such built environments are humanmade and can reflect urban planning features such as how neighborhoods are designed, convenience of trails and parks, width of sidewalks, and the connectivity of transportation routes.

Troped and his research team found that most of the moderate to vigorous physical activity people participated in took place outside a 1-kilometer buffer zone around their home.

When moderate to vigorous physical activity occurred within 1 kilometer of a person's home, the buffer zone had a higher density of residential housing, more connected streets and a greater mix of residential and commercial land uses, which can allow people to walk to destinations such as stores.

"In future studies using GPS and activity monitors, we will try to move away from a focus on the area where people live to try to better understand the range of locations, near and far from home, where people are active and the characteristics of those environments," Troped said.

The research team fitted 148 people, ages 19-78, with activity monitors and GPS devices for four days - two weekdays and two weekend days - in the Boston metropolitan area. The activity monitors, also known as accelerometers, record the intensity of activity each minute during a person's waking hours. As the intensity for each minute increases, such as from walking to running, the activity count for each minute increases. If a person is sitting in a car or just fidgeting, then a low level of activity is reported. The global positioning systems device was worn whenever the individual was outdoors or leaving the home.

The findings were published in April's American Journal of Preventive Medicine.

"We are really just scratching the surface on this type of research, but it's a start," Troped said. "More work needs to be done to identify areas where people are physically active and better understand the qualities of those areas that attract people to them. We also need to learn how this might differ by age and racial and ethnic background so we can use this information to develop interventions for different audiences."

In addition to Troped, the research team was composed of Jeffrey S. Wilson of Indiana University-Purdue University Indianapolis: Charles E. Matthews of the National Cancer Institute: Ellen K. Cromley of the Institute for Community Research in Hartford, Conn.; and Steven J. Melly of the Harvard School of Public Health.

The study was supported with funding from the Active Living Research Program, The Robert Wood Johnson Foundation and Purdue's College of Liberal Arts.

Writer: Amy Patterson Neubert, 765-494-9723,

Source: Philip Troped, 765-496-9486,

Amy Patterson Neubert | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>