Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Addiction relapse might be thwarted by turning off brain trigger

25.06.2013
UCSF study points to potential strategy for erasing memory of addiction

A new study by researchers at the Ernest Gallo Clinic and Research Center at UC San Francisco offers encouraging findings that researchers hope may one day lead to a treatment option for people who suffer from alcohol abuse disorders and other addictions.

In the study, conducted in rats, the UCSF researchers were able to identify and deactivate a brain pathway linked to the memories that cause cravings for alcohol, thus preventing the animals from seeking alcohol and drinking it, the equivalent of relapse.

"One of the main causes of relapse is craving, triggered by the memory by certain cues - like going into a bar, or the smell or taste of alcohol," said lead author Segev Barak, PhD, at the time a postdoctoral fellow in the lab of co-senior author Dorit Ron, PhD, a Gallo Center investigator and UCSF professor of neurology.

"We learned that when rats were exposed to the smell or taste of alcohol there was a small window of opportunity to target the area of the brain that reconsolidates the memory of the craving for alcohol and to weaken or even erase the memory, and thus the craving" he said.

The study, also supervised by co-senior author Patricia H. Janak, a Gallo Center investigator and UCSF professor of neurology, will be published online on June 23, 2013 in Nature Neuroscience.

In the first phase of the study, rats had the choice to freely drink water or alcohol over the course of seven weeks, and during this time developed a high preference for alcohol. In the next phase, they had the opportunity to access alcohol for one hour a day, which they learned to do by pressing a lever. They were then put through a 10-day period of abstinence from alcohol.

Following this period, the animals were exposed for 5 minutes to just the smell and taste of alcohol, which cued them to remember how much they liked drinking it. The researchers then scanned the animals' brains, and identified the neural mechanism responsible for the reactivation of the memory of the alcohol - a molecular pathway mediated by an enzyme known as mammalian target of rapamycin complex 1 (mTORC1).

They found that just a small drop of alcohol presented to the rats turned on the mTORC1 pathway specifically in a select region of the amygdala, a structure linked to emotional reactions and withdrawal from alcohol, and cortical regions involved in memory processing.

They further showed that once mTORC1 was activated, the alcohol-memory stabilized (reconsolidated) and the rats relapsed on the following days, meaning in this case, that they started again to push the lever to dispense more alcohol.

"The smell and taste of alcohol were such strong cues that we could target the memory specifically without impacting other memories, such as a craving for sugar," said Barak, who added that the Ron research group has been doing brain studies for many years and has never seen such a robust and specific activation in the brain.

In the next part of the study, the researchers set out to see if they could prevent the reconsolidation of the memory of alcohol by inhibiting mTORC1, thus preventing relapse. When mTORC1 was inactivated using a drug called rapamycin, administered immediately after the exposure to the cue (smell, taste), there was no relapse to alcohol-seeking the next day. Strikingly, drinking remained suppressed for up to 14 days, the end point of the study. These results suggest that rapamycin erased the memory of alcohol for a long period, said Ron.

The authors said the study is an important first step, but that more research is needed to determine how mTORC1 contributes to alcohol memory reconsolidation and whether turning off mTORC1 with rapamycin would prevent relapse for more than two weeks.

The authors also said it would be interesting to test if rapamycin, an FDA-approved drug currently used to prevent organ rejection after transplantation, or other mTORC1 inhibitors that are currently being developed in pharmaceutical companies, would prevent relapse in human alcoholics.

"One of the main problems in alcohol abuse disorders is relapse, and current treatment options are very limited." Barak said. "Even after detoxification and a period of rehabilitation, 70 to 80 percent of patients will relapse in the first several years. It is really thrilling that we were able to completely erase the memory of alcohol and prevent relapse in these animals. This could be a revolution in treatment approaches for addiction, in terms of erasing unwanted memories and thereby manipulating the brain triggers that are so problematic for people with addictions."

The other co-authors of the paper are Feng Liu, PhD, Sami Ben Hamida, PhD, Quinn V. Yowell BS, Jeremie Neasta, PhD, and Viktor Kharazia, PhD, all of the Gallo Center and UCSF Department of Neurology.

The study was supported by funds from the National Institute on Alcohol Abuse and Alcoholism and funds from the State of California for Medical Research on Alcohol and Substance Abuse administered through UC San Francisco.

The UCSF-affiliated Ernest Gallo Clinic and Research Center is one of the world's preeminent academic centers for the study of the biological basis of alcohol and substance use disorders. Gallo Center discoveries of potential molecular targets for the development of therapeutic medications are extended through preclinical and proof-of-concept clinical studies.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jeffrey Norris | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>