Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acupuncture reduces protein linked to stress in first of its kind animal study

20.12.2011
Although the study was done in rats, scientists suggest the findings could help explain why many users of the therapy report health benefits

Acupuncture significantly reduces levels of a protein in rats linked to chronic stress, researchers at Georgetown University Medical Center (GUMC) have found. They say their animal study may help explain the sense of well-being that many people receive from this ancient Chinese therapy.

Published online in December in Experimental Biology and Medicine, the researchers say that if their findings are replicated in human studies, acupuncture would offer a proven therapy for stress, which is often difficult to treat.

"It has long been thought that acupuncture can reduce stress, but this is the first study to show molecular proof of this benefit," says the study's lead author, Ladan Eshkevari, Ph.D., an assistant professor at Georgetown's School of Nursing & Health Studies, a part of GUMC.

Eshkevari, who is also a nurse anesthetist as well as a certified acupuncturist, says she conducted the study because many of the patients she treats with acupuncture in the pain clinic reported a "better overall sense of wellbeing — and they often remarked that they felt less stress."

While traditional Chinese acupuncture has been thought to relieve stress —in fact, the World Health Organization states that acupuncture is useful as adjunct therapy in more than 50 disorders, including chronic stress — Eshevari says that no one has biological proof that it does so.

So she designed a study to test the effect of acupuncture on blood levels of neuropeptide Y (NPY), a peptide that is secreted by the sympathetic nervous system in humans. This system is involved in the "flight or fight" response to acute stress, resulting in constriction of blood flow to all parts of the body except to the heart, lungs, and brain (the organs most needed to react to danger). Chronic stress, however, can cause elevated blood pressure and cardiac disease.

Eshevari used rats in this study because these animals are often used to research the biological determinants of stress. They mount a stress response when exposed to winter-like cold temperatures for an hour a day.

Eshevari allowed the rats to become familiar with her, and encouraged them to rest by crawling into a small sock that exposed their legs. She very gently conditioned them to become comfortable with the kind of stimulation used in electroacupuncture — an acupuncture needle that delivers a painless small electrical charge. This form of acupuncture is a little more intense than manual acupuncture and is often used for pain management, she says, adding "I used electroacupuncture because I could make sure that every rat was getting the same treatment dose."

She then selected a single acupuncture spot to test: Zuslanli (ST 36 on the stomach meridian), which is said to help relieve a variety of conditions including stress. As with the rats, that acupuncture point for humans is on the leg below the knee.

The study utilized four groups of rats for a 14-day experiment: a control group that was not stressed and received no acupuncture; a group that was stressed for an hour a day and did not receive acupuncture; a group that was stressed and received "sham" acupuncture near the tail; and the experimental group that were stressed and received acupuncture to the Zuslanli spot on the leg.

She found NPY levels in the experimental group came down almost to the level of the control group, while the rats that were stressed and not treated with Zuslanli acupuncture had high levels of the protein.

In a second experiment, Eshevari stopped acupuncture in the experimental group but continued to stress the rats for an additional four days, and found NPY levels remained low. "We were surprised to find what looks to be a protective effect against stress," she says.

Eshevari is continuing to study the effect of acupuncture with her rat models by testing another critical stress pathway. Preliminary results look promising, she says.

The study was funded by the American Association of Nurse Anesthetists doctoral fellowship award to Eshevari, and by a grant from the National Institutes of Health's National Center for Complementary and Alternative Medicine. Co-authors include Georgetown researchers Susan Mulroney, Ph.D., Rupert Egan, Dylan Phillips, Jason Tilan, Elissa Carney, Nabil Azzam, Ph.D., and Hakima Amri, Ph.D. The authors disclose no conflicts of interest.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health. In fiscal year 2010-11, GUMC accounted for 85 percent of the university's sponsored research funding.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>