Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Acupuncture reduces protein linked to stress in first of its kind animal study

Although the study was done in rats, scientists suggest the findings could help explain why many users of the therapy report health benefits

Acupuncture significantly reduces levels of a protein in rats linked to chronic stress, researchers at Georgetown University Medical Center (GUMC) have found. They say their animal study may help explain the sense of well-being that many people receive from this ancient Chinese therapy.

Published online in December in Experimental Biology and Medicine, the researchers say that if their findings are replicated in human studies, acupuncture would offer a proven therapy for stress, which is often difficult to treat.

"It has long been thought that acupuncture can reduce stress, but this is the first study to show molecular proof of this benefit," says the study's lead author, Ladan Eshkevari, Ph.D., an assistant professor at Georgetown's School of Nursing & Health Studies, a part of GUMC.

Eshkevari, who is also a nurse anesthetist as well as a certified acupuncturist, says she conducted the study because many of the patients she treats with acupuncture in the pain clinic reported a "better overall sense of wellbeing — and they often remarked that they felt less stress."

While traditional Chinese acupuncture has been thought to relieve stress —in fact, the World Health Organization states that acupuncture is useful as adjunct therapy in more than 50 disorders, including chronic stress — Eshevari says that no one has biological proof that it does so.

So she designed a study to test the effect of acupuncture on blood levels of neuropeptide Y (NPY), a peptide that is secreted by the sympathetic nervous system in humans. This system is involved in the "flight or fight" response to acute stress, resulting in constriction of blood flow to all parts of the body except to the heart, lungs, and brain (the organs most needed to react to danger). Chronic stress, however, can cause elevated blood pressure and cardiac disease.

Eshevari used rats in this study because these animals are often used to research the biological determinants of stress. They mount a stress response when exposed to winter-like cold temperatures for an hour a day.

Eshevari allowed the rats to become familiar with her, and encouraged them to rest by crawling into a small sock that exposed their legs. She very gently conditioned them to become comfortable with the kind of stimulation used in electroacupuncture — an acupuncture needle that delivers a painless small electrical charge. This form of acupuncture is a little more intense than manual acupuncture and is often used for pain management, she says, adding "I used electroacupuncture because I could make sure that every rat was getting the same treatment dose."

She then selected a single acupuncture spot to test: Zuslanli (ST 36 on the stomach meridian), which is said to help relieve a variety of conditions including stress. As with the rats, that acupuncture point for humans is on the leg below the knee.

The study utilized four groups of rats for a 14-day experiment: a control group that was not stressed and received no acupuncture; a group that was stressed for an hour a day and did not receive acupuncture; a group that was stressed and received "sham" acupuncture near the tail; and the experimental group that were stressed and received acupuncture to the Zuslanli spot on the leg.

She found NPY levels in the experimental group came down almost to the level of the control group, while the rats that were stressed and not treated with Zuslanli acupuncture had high levels of the protein.

In a second experiment, Eshevari stopped acupuncture in the experimental group but continued to stress the rats for an additional four days, and found NPY levels remained low. "We were surprised to find what looks to be a protective effect against stress," she says.

Eshevari is continuing to study the effect of acupuncture with her rat models by testing another critical stress pathway. Preliminary results look promising, she says.

The study was funded by the American Association of Nurse Anesthetists doctoral fellowship award to Eshevari, and by a grant from the National Institutes of Health's National Center for Complementary and Alternative Medicine. Co-authors include Georgetown researchers Susan Mulroney, Ph.D., Rupert Egan, Dylan Phillips, Jason Tilan, Elissa Carney, Nabil Azzam, Ph.D., and Hakima Amri, Ph.D. The authors disclose no conflicts of interest.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health. In fiscal year 2010-11, GUMC accounted for 85 percent of the university's sponsored research funding.

Karen Mallet | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>