Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much or too little activity bad for knees

26.11.2012
Both very high and very low levels of physical activity can accelerate the degeneration of knee cartilage in middle-aged adults, according to a new study presented at the annual meeting of the Radiological Society of North America (RSNA).

Nearly one in every two people in the U.S. may develop knee osteoarthritis by age 85, according to the Centers for Disease Control and Prevention. By 2030, an estimated 67 million Americans over the age of 18 are projected to have physician-diagnosed arthritis.

Researchers at the University of California in San Francisco (UCSF) previously had found an association between physical activity and cartilage degeneration. But that study focused on one point in time.

For the new study, the UCSF researchers looked at changes in knee cartilage among a group of middle-aged adults over a four-year period. They used magnetic resonance imaging (MRI)-based T2 relaxation times to track the evolution of early degenerative cartilage changes in the knee.

"T2 relaxation times generated from MR images allow for analysis of the biochemical and molecular composition of cartilage," said Wilson Lin, B.S., research fellow and medical student at UCSF. "There is increased water mobility in damaged cartilage, and increased water mobility results in increased T2 relaxation time."

The researchers analyzed 205 patients, age 45 to 60, from the UCSF-based Osteoarthritis Initiative, a nationwide study funded by the National Institutes of Health on the prevention and treatment of knee osteoarthritis. Participants used a questionnaire to record their physical activity. The researchers measured T2 values of cartilage at the patella, femur and tibia of the right knee joint at baseline and at two- and four-year visits.

According to the results of the study, participating frequently in high-impact activities, such as running, appears associated with more degenerated cartilage and potentially a higher risk for development of osteoarthritis.

"When we compared the scores among groups, we found an accelerated progression of T2 relaxation times in those who were the most physically active," said Thomas M. Link, M.D., professor of radiology and chief of musculoskeletal imaging at UCSF. "Those who had very low levels of activity also had accelerated progression of T2 values. This suggests that there may be an optimal level of physical activity to preserve the cartilage."

The results open up numerous areas for future inquiry, including analysis of the impact of specific types of physical activity on knee cartilage health. For instance, some of the participants in the Osteoarthritis Initiative wore an accelerometer, a device with a motion sensor to record physical activity.

"In this study, we used the subjective measure of a questionnaire," Lin said. "The accelerometers provide a more objective way to measure physical activity."

Along with the findings on changes in knee cartilage, the study also highlighted the potential of T2 relaxation times as an early indicator of cartilage degeneration.

"Standard MRI shows cartilage defects that are irreversible," Dr. Link said. "The exciting thing about the new cartilage T2 measurements is that they give us information on a biochemical level, thus potentially detecting changes at an earlier stage when they may still be reversible."

Dr. Link noted that people who have a higher risk for osteoarthritis (such as family history of total joint replacement, obesity, history of knee injury or surgery) can reduce their risk for cartilage degeneration by maintaining a healthy weight and avoiding risky activities and strenuous, high-impact exercise.

"Lower impact sports, such as walking or swimming, are likely more beneficial than higher impact sports, such as running or tennis, in individuals at risk for osteoarthritis," he said.

Coauthors are Waraporn Srikhum, M.D., Charles E. McCulloch, Ph.D., Michael Neitt, Ph.D., John Lynch, Ph.D., Gabby B. Joseph, Ph.D., and Hamza Alizai, M.D.

Note: Copies of RSNA 2012 news releases and electronic images will be available online at RSNA.org/press12 beginning Monday, Nov. 26.

RSNA is an association of more than 50,000 radiologists, radiation oncologists, medical physicists and related scientists, promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill.

Editor's note: The data in these releases may differ from those in the published abstract and those actually presented at the meeting, as researchers continue to update their data right up until the meeting. To ensure you are using the most up-to-date information, please call the RSNA Newsroom at 1-312-949-3233.

For patient-friendly information on MRI of the knee, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org
http://RadiologyInfo.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>